全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

干细胞外泌体在阿尔茨海默病中的研究进展
Research Progress of Stem Cell Exosomes in Alzheimer’s Disease

DOI: 10.12677/BP.2023.132013, PP. 91-97

Keywords: 阿尔茨海默病,间充质干细胞,外泌体,药物递送系统
Alzheimer’s Disease
, Mesenchymal Stem Cells, Exosomes, Drug Delivery Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s Disease, AD)是一种病理机制复杂、以进行性认知功能障碍为主的中枢神经系统疾病,目前仍缺乏有效的治疗方法。间充质干细胞(Mesenchymal Stem Cells, MSCs)外泌体已被证实促进抗炎和Aβ降解,针对AD的病理生理分子机制特征从根本上改善AD症状,因其尺寸、形状、材料等特殊性,视为药物递送系统软纳米颗粒候选载体,有助于解决生物利用度问题,有效改善药物药动学和药效学性能。本文主要介绍AD病理研究最新进展、外泌体抑制Aβ蛋白表达水平方式及药物新型运输载体传递系统构建前沿,为AD治疗提供新的视角。
Alzheimer’s Disease (AD) is a central nervous system disease with a complex pathological mechanism and progressive cognitive dysfunction, and there is still no effective treatment. Mesenchymal Stem Cells (MSCs) exosomes promote anti-inflammatory, accelerate Aβ degradation, and achieve therapeutic effects for the pathological characteristics of AD, and can be used as nano-drug delivery systems to effectively solve the problem of bioavailability and improve drug pharmacokinetics and pharmacodynamic properties due to their size, shape, material and other particularities. This article mainly introduces the latest progress in AD pathology research and the attempts of exosomes to improve Aβ clearance to construct a drug delivery system, which provides a new perspective for AD treatment.

References

[1]  Tremblay-Mercier, J., Madjar, C., Das, S., et al. (2021) Open Science Datasets from PREVENT-AD, a Longitudinal Cohort of Pre-Symptomatic Alzheimer’s Disease. NeuroImage: Clinical, 31, Article ID: 102733.
https://doi.org/10.1016/j.nicl.2021.102733
[2]  Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496.
https://doi.org/10.1016/j.arr.2021.101496
[3]  Gouilly, D., Rafiq, M., Nogueira, L., et al. (2023) Beyond the Am-yloid Cascade: An Update of Alzheimer’s Disease Pathophysiology. Revue Neurologique.
https://doi.org/10.1016/j.neurol.2022.12.006
[4]  Dhami, M., Raj, K. and Singh, S. (2023) Relevance of Gut Mi-crobiota to Alzheimer’s Disease (AD): Potential Effects of Probiotic in Management of AD. Aging and Health Research, 3, Article ID: 100128.
https://doi.org/10.1016/j.ahr.2023.100128
[5]  Krishaa, L., Ng, T.K.S., Wee, H.N. and Ching, J. (2023) Gut-Brain Axis through the Lens of Gut Microbiota and Their Relationships With Alzheimer’s Disease Pathology: Review and Recommendations. Mechanisms of Ageing and Development, 211, Article ID: 111787.
https://doi.org/10.1016/j.mad.2023.111787
[6]  Wang, Z., Gao, C., Zhang, L. and Sui, R. (2023) Hesperidin Methylchalcone (HMC) Hinders Amyloid-β Induced Alzheimer’s Disease by Attenuating Cholinesterase Activity, Mac-romolecular Damages, Oxidative Stress and Apoptosis via Regulating NF-κB and Nrf2/HO-1 Pathways. International Journal of Biological Macromolecules, 233, Article ID: 123169.
https://doi.org/10.1016/j.ijbiomac.2023.123169
[7]  Sethi, B., Kumar, V., Mahato, K., Coulter, D.W. and Mahato, R.I. (2022) Recent Advances in Drug Delivery and Targeting to the Brain. Journal of Controlled Release, 350, 668-687.
https://doi.org/10.1016/j.jconrel.2022.08.051
[8]  Zhang, Z., Yang, X., Song, Y.-Q. and Tu, J. (2021) Autophagy in Alzheimer’s Disease Pathogenesis: Therapeutic Potential and Future Perspectives. Ageing Research Reviews, 72, Arti-cle ID: 101464.
https://doi.org/10.1016/j.arr.2021.101464
[9]  Bai, R., Guo, J., Ye, X.-Y., Xie, Y. and Tian, X. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619.
https://doi.org/10.1016/j.arr.2022.101619
[10]  Briyal, S., Ranjan, A.K. and Gulati, A. (2023) Oxidative Stress: A Target to Treat Alzheimer’s Disease and Stroke. Neurochemistry International, 165, Article ID: 105509.
https://doi.org/10.1016/j.neuint.2023.105509
[11]  Ho, T., Ahmadi, S. and Kerman, K. (2022) Do Glutathione and Copper Interact to Modify Alzheimer’s Disease Pathogenesis? Free Radical Biology and Medicine, 181, 180-196.
https://doi.org/10.1016/j.freeradbiomed.2022.01.025
[12]  Susmitha, G. and Kumar, R. (2023) Role of Microbial Dysbiosis in the Pathogenesis of Alzheimer’s Disease. Neuropharmacology, 229, Article ID: 109478.
https://doi.org/10.1016/j.neuropharm.2023.109478
[13]  Lauretti, E., Dabrowski, K. and Pratico, D. (2021) The Neurobiology of Non-Coding RNAs and Alzheimer’s Disease Pathogenesis: Pathways, Mechanisms and Translational Opportunities. Ageing Research Reviews, 71, Article ID: 101425.
https://doi.org/10.1016/j.arr.2021.101425
[14]  Matsuzaki, K. (2022) Aβ-Ganglioside Interactions in the Pathogene-sis of Alzheimer’s Disease. Biochimica et Biophysica Acta (BBA)-Biomembranes, 186, Article ID: 183233.
https://doi.org/10.1016/j.bbamem.2020.183233
[15]  Evering, T.H., Marston, J.L., Gan, L. and Nixon, D.F. (2022) Transposable Elements and Alzheimer’s Disease Pathogenesis. Trends in Neurosciences, 46, 170-172.
https://doi.org/10.1016/j.tins.2022.12.003
[16]  Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339.
https://doi.org/10.1016/j.cell.2019.09.001
[17]  Knight, R., Khondoker, M., Magill, N., et al. (2018) A Systematic Review and Meta-Analysis of the Effectiveness of Acetylcholinesterase Inhibitors and Memantine in Treating the Cogni-tive Symptoms of Dementia. Dementia and Geriatric Cognitive Disorders, 45, 131-151.
https://doi.org/10.1159/000486546
[18]  Cummings, J., Lee, G., Zhong, K., Fonseca, J. and Taghva, K. (2021) Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7, e12179.
https://doi.org/10.1002/trc2.12179
[19]  Hara, Y., Mckeehan, N. and Fillit, H.M. (2019) Translating the Biology of Aging into Novel Therapeutics for Alzheimer Disease. Neurology, 92, 84-93.
https://doi.org/10.1212/WNL.0000000000006745
[20]  Xun, C., Ge, L., Tang, F., et al. (2020) Insight into the Proteomic Profiling of Exosomes Secreted by Human OM-MSCs Reveals a New Potential Therapy. Biomedicine & Pharmacotherapy, 131, Article ID: 110584.
https://doi.org/10.1016/j.biopha.2020.110584
[21]  Bao, C. and He, C. (2021) The Role and Therapeutic Potential of MSC-Derived Exosomes in Osteoarthritis. Archives of Biochemistry and Biophysics, 710, Article ID: 109002.
https://doi.org/10.1016/j.abb.2021.109002
[22]  Chavda, V.P., Pandya, A., Kumar, L., et al. (2023) Exosome Nan-ovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today, 49, Article ID: 101771.
https://doi.org/10.1016/j.nantod.2023.101771
[23]  Ding, D.-C., Shyu, W.-C. and Lin, S.Z. (2011) Mesenchymal Stem Cells. Cell Transplant, 20, 5-14.
https://doi.org/10.3727/096368910X
[24]  Valerio, L.S.A. and Sugaya, K. (2020) Xeno- and Transgene-Free Re-programming of Mesenchymal Stem Cells toward the Cells Expressing Neural Markers Using Exosome Treatments. PLOS ONE, 15, e0240469.
https://doi.org/10.1371/journal.pone.0240469
[25]  Hoban, D.B., Howard, L. and Dowd, E. (2015) GDNF-Secreting Mesenchymal Stem Cells Provide Localized Neuroprotection in an Inflammation-Driven Rat Model of Parkinson’s Disease. Neuroscience, 303, 402-411.
https://doi.org/10.1016/j.neuroscience.2015.07.014
[26]  Ji, S., Lin, S., Chen, J., et al. (2018) Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Current Eye Research, 43, 810-820.
https://doi.org/10.1080/02713683.2018.1440604
[27]  Mathew, B., Ravindran, S., Liu, X., et al. (2019) Mesen-chymal Stem Cell-Derived Extracellular Vesicles and Retinal Ischemia-Reperfusion. Biomaterials, 197, 146-160.
https://doi.org/10.1016/j.biomaterials.2019.01.016
[28]  Wang, L., Pei, S., Han, L., et al. (2018) Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury. Cellular Physiology and Biochemistry, 50, 1535-1559.
https://doi.org/10.1159/000494652
[29]  Klein, C., Roussel, G., Brun, S., et al. (2018) 5-HIAA Induces Neprilysin to Ameliorate Pathophysiology and Symptoms in a Mouse Model for Alzheimer’s Disease. Acta Neuropathologica Communications, 6, Article No. 136.
https://doi.org/10.1186/s40478-018-0640-z
[30]  Zhang, T., Ma, S., Lv, J., et al. (2021) The Emerging Role of Ex-osomes in Alzheimer’s Disease. Ageing Research Reviews, 68, Article ID: 101321.
https://doi.org/10.1016/j.arr.2021.101321
[31]  Chen, W., Huang, Y., Han, J., et al. (2016) Immunomodulatory Ef-fects of Mesenchymal Stromal Cells-Derived Exosome. Immunologic Research, 64, 831-840.
https://doi.org/10.1007/s12026-016-8798-6
[32]  Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. Journal of Biological Chemistry, 287, 10977-10989.
https://doi.org/10.1074/jbc.M111.324616
[33]  Yuyama, K., Sun, H., Sakai, S., et al. (2014) Decreased Amyloid-β Pathologies by Intracerebral Loading of Glycosphingolipid-enriched Exosomes in Alzheimer Model Mice. Journal of Bi-ological Chemistry, 289, 24488-24498.
https://doi.org/10.1074/jbc.M114.577213
[34]  Yoon, S.S. and Jo, S.-A. (2012) Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease. Biomolecules & Therapeutics, 20, 245-255.
https://doi.org/10.4062/biomolther.2012.20.3.245
[35]  Nalivaeva, N.N., Zhuravin, I.A. and Turner, A.J. (2020) Neprilysin Expression and Functions in Development, Ageing and Disease. Mechanisms of Ageing and Development, 192, Article ID: 111363.
https://doi.org/10.1016/j.mad.2020.111363
[36]  Zhang, H., Liu, D., Wang, Y., et al. (2017) Meta-Analysis of Ex-pression and Function of Neprilysin in Alzheimer’s Disease. Neuroscience Letters, 657, 69-76.
https://doi.org/10.1016/j.neulet.2017.07.060
[37]  Li, Y., Wang, Y., Wang, J., et al. (2020) Expression of Nepri-lysin in Skeletal Muscle by Ultrasound-Mediated Gene Transfer (Sonoporation) Reduces Amyloid Burden for AD. Methods & Clinical Development, 17, 300-308.
https://doi.org/10.1016/j.omtm.2019.12.012
[38]  Katsuda, T., Tsuchiya, R., Kosaka, N., et al. (2013) Human Adi-pose Tissue-Derived Mesenchymal Stem Cells Secrete Functional Neprilysin-Bound Exosomes. Scientific Reports, 3, Article No. 1197.
https://doi.org/10.1038/srep01197
[39]  Meghana, G.S., Gowda, D.V., Chidambaram, S.B. and Osmani, R.A. (2023) Amyloid-β Pathology in Alzheimer’s Disease: A Nano Delivery Approach. Vibrational Spectros-copy, 126, Article ID: 103510.
https://doi.org/10.1016/j.vibspec.2023.103510
[40]  Wang, J., Tang, W., Yang, M., et al. (2021) Inflammatory Tu-mor Microenvironment Responsive Neutrophil Exosomes-Based Drug Delivery System for Targeted Glioma Therapy. Biomaterials, 273, Article ID: 120784.
https://doi.org/10.1016/j.biomaterials.2021.120784
[41]  Gao, J., Dong, X., Su, Y. and Wang, Z. (2021) Human Neutrophil Membrane-Derived Nanovesicles as a Drug Delivery Platform for Improved Therapy of Infectious Diseases. Acta Biomaterialia, 123, 354-363.
https://doi.org/10.1016/j.actbio.2021.01.020
[42]  Wang, H., Sui, H., Zheng, Y., et al. (2019) Curcumin-Primed Exosomes Potently Ameliorate Cognitive Function in Ad Mice by Inhibiting Hyperphosphorylation of the Tau Protein through the AKT/GSK-3β Pathway. Nanoscale, 11, 7481-7496.
https://doi.org/10.1039/C9NR01255A
[43]  Fayazi, N., Sheykhhasan, M., Soleimani Asl, S. and Najafi, R. (2021) Stem Cell-Derived Exosomes: A New Strategy of Neuro-degenerative Disease Treatment. Molecular Neurobiology, 58, 3494-3514.
https://doi.org/10.1007/s12035-021-02324-x
[44]  Xi, Y., Chen, Y., Jin, Y., et al. (2022) Versatile Nanomaterials for Alzheimer’s Disease: Pathogenesis Inspired Disease-Modifying Therapy. Journal of Controlled Release, 345, 38-61.
https://doi.org/10.1016/j.jconrel.2022.02.034

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413