全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高层建筑裙房屋面区域行人风环境研究
Study on Pedestrian Wind Environment on Podium Roof of High-Rise Building

DOI: 10.12677/IJFD.2023.112006, PP. 57-69

Keywords: 行人风环境,裙房屋面,加速比,数值模拟,风洞试验
Pedestrian Wind Environment
, Podium Roof, Speed-Up Ratio, Numerical Simulation, Wind Tunnel Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究高层建筑裙房屋面区域的行人风环境,进行了一系列风洞试验和数值模拟研究,分析了不同建筑尺寸参数下的裙房屋面行人风速分布特性。结果表明,空气流经塔楼后,在塔楼两侧角部发生分离、绕流,使塔楼两侧的裙房屋面区域出现较大风速,且当来流风向与建筑立面呈45度夹角时风速最大。裙房屋面的最大风速和加速区面积随着裙房宽度的增大而增大,随女儿墙高度的增大而减小。基于以上分析结果,提出了计算裙房屋面最大风速的经验公式,可为行人风环境评估提供参考。
In order to study the pedestrian wind environment on podium roof of high-rise building, a series of wind tunnel tests and numerical simulations were carried out. The distribution characteristics of pedestrian wind speed on podium roof with different building size parameters were analyzed. The results show that the around flow effect will cause significant speed-up effect on both sides of the tall building, resulting in pedestrian wind speed on these areas is relatively large. The pedestrian wind speed is the largest when the angle between the incoming wind and the building facade is 45?. The maximum wind speed and the speed-up area on the podium roof increase with the width of the podium, and decrease with the height of the parapet wall. The above analysis results lead to the proposal of the empirical formula of maximum wind speed, which can provide reference for the as-sessment of pedestrian wind environment.

References

[1]  He, Y.Y., Liu, Z.X. and Ng, E. (2022) Parametrization of Irregularity of Urban Morphologies for Designing Better Pe-destrian Wind Environment in High-Density Cities—A Wind Tunnel Study. Building and Environment, 2022, 109692.
https://doi.org/10.1016/j.buildenv.2022.109692
[2]  Kubota, T., Miura, M., Tominaga, Y., et al. (2008) Wind Tunnel Tests on the Relationship between Building Density and Pedestrian-Level Wind Velocity: Development of Guide-lines for Realizing Acceptable Wind Environment in Residential Neighborhoods. Building and Environment, 43, 1699-1708.
https://doi.org/10.1016/j.buildenv.2007.10.015
[3]  Tsang, C.W., Kwok, K.C. and Hitchcock, P.A. (2012) Wind Tunnel Study of Pedestrian Level Wind Environment around Tall Buildings: Effects of Building Dimensions, Separation and Podium. Building and Environment, 49, 167-181.
https://doi.org/10.1016/j.buildenv.2011.08.014
[4]  马文勇, 刘庆宽, 刘小兵, 等. 群体高层建筑行人区域风环境试验研究[J]. 工程力学, 2013, 30(B06): 304-308.
[5]  Mittal, H., Sharma, A. and Gairola, A. (2019) Numerical Simulation of Pedestrian Level Wind Flow around Buildings: Effect of Corner Modification and Orientation. Journal of Building Engineering, 22, 314-326.
https://doi.org/10.1016/j.jobe.2018.12.014
[6]  Toa, P. and Lam, K.M. (1995) Evaluation of Pedestrian-Level Wind Environment around a Row of Tall Buildings Using a Quartile-Level Wind Speed Descripter. Journal of Wind Engineer-ing and Industrial Aerodynamics, 54, 527-541.
https://doi.org/10.1016/0167-6105(94)00069-P
[7]  Soligo, M.J., Irwin, P.A., Williams, C.J., et al. (1998) A Comprehensive Assessment of Pedestrian Comfort Including Thermal Effects. Journal of Wind Engineering and Indus-trial Aerodynamics, 77, 753-766.
https://doi.org/10.1016/S0167-6105(98)00189-5
[8]  谢壮宁, 卢瑜, 余先锋. 高层建筑底部区域行人风环境试验研究[J]. 同济大学学报(自然科学版), 2020, 48(12): 1726-1732.
[9]  Wu, H. and Stathopoulos, T. (1994) Fur-ther Experiments on Irwin’s Surface Wind Sensor. Journal of Wind Engineering and Industrial Aerodynamics, 53, 441-452.
https://doi.org/10.1016/0167-6105(94)90095-7

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133