全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

RIPK2:治疗炎症性疾病的新靶点
RIPK2: A New Therapeutic Target for Inflammatory Diseases

DOI: 10.12677/BP.2023.132015, PP. 105-114

Keywords: 炎症性疾病,NOD,RIPK2,抑制剂
Inflammatory Diseases
, NOD, RIPK2, Inhibitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

炎症是机体受到刺激后出现的一种保护性反应,然而,失调的炎症反应又会引发各种炎症性疾病。受体相互作用蛋白激酶2 (receptor interacting protein kinase 2, RIPK2)是核苷酸结合寡聚化结构域蛋白1和2 (nucleotide-binding oligomerization domain containing protein 1/2, NOD1/2)下游的信号转导分子,在NOD介导的炎症反应中起到了关键的调控作用。NOD-RIPK2信号通路与多种炎症性疾病存在联系,本文对RIPK2的结构功能、RIPK2与炎症性疾病的关系以及RIPK2抑制剂的研发进展进行综述,希望为炎症性疾病的治疗提供新的思路。
Inflammation is a protective response that occurs in response to stimuli. However, dysregulated inflammation can lead to various inflammato-ry diseases. Receptor-interacting protein kinase 2 (RIPK2) is a downstream signaling molecule of nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) and plays a cru-cial role in regulating NOD-mediated inflammatory responses. The NOD-RIPK2 pathway is associ-ated with various inflammatory diseases. In this review, we summarize the recent advances in un-derstanding the role of RIPK2 in inflammatory diseases and the development of RIPK2 inhibitors, with the aim of providing new ideas for the treatment of inflammatory diseases.

References

[1]  Fullerton, J.N. and Gilroy, D.W. (2016) Resolution of Inflammation: A New Therapeutic Frontier. Nature Reviews Drug Discovery, 15, 551-567.
https://doi.org/10.1038/nrd.2016.39
[2]  Zarrin, A.A., Bao, K., Lupardus, P. and Vucic, D. (2021) Kinase Inhibition in Autoimmunity and Inflammation. Nature Reviews Drug Discovery, 20, 39-63.
https://doi.org/10.1038/s41573-020-0082-8
[3]  Eng, V.V., Wemyss, M.A. and Pearson, J.S. (2021) The Diverse Roles of RIP Kinases in Host-Pathogen Interactions. Seminars in Cell and Developmental Biology, 109, 125-143.
https://doi.org/10.1016/j.semcdb.2020.08.005
[4]  Trindade, B.C. and Chen, G.Y. (2020) NOD1 and NOD2 in In-flammatory and Infectious Diseases. Immunological Reviews, 297, 139-161.
https://doi.org/10.1111/imr.12902
[5]  Zhao, W., Leng, R.X. and Ye, D.Q. (2023) RIPK2 as a Promising Drugga-ble Target for Autoimmune Diseases. International Immunopharmacology, 118, Article ID: 110128.
https://doi.org/10.1016/j.intimp.2023.110128
[6]  Mccarthy, J.V., Ni, J. and Dixit, V.M. (1998) RIP2 Is a Novel NF-κB-Activating and Cell Death-Inducing Kinase. Journal of Biological Chemistry, 273, 16968-16975.
https://doi.org/10.1074/jbc.273.27.16968
[7]  Inohara, N., Del Peso, L., Koseki, T., Chen, S. and Nunez, G. (1998) RICK, a Novel Protein Kinase Containing a Caspase Recruitment Domain, Interacts with CLARP and Regulates CD95-Mediated Apoptosis. Journal of Biological Chemistry, 273, 12296-12300.
https://doi.org/10.1074/jbc.273.20.12296
[8]  Thome, M., Hofmann, K., Burns, K., Martinon, F., Bodmer, J.L., Mattmann, C. and Tschopp, J. (1998) Identification of CARDIAK, a RIP-Like Kinase That Associates with Caspase-1. Current Biology, 8, 885-888.
https://doi.org/10.1016/S0960-9822(07)00352-1
[9]  Cuny, G.D. and Degterev, A. (2021) RIPK Protein Kinase Family: Atypical Lives of Typical Kinases. Seminars in Cell and Developmental Biology, 109, 96-105.
https://doi.org/10.1016/j.semcdb.2020.06.014
[10]  Chen, G., Shaw, M.H., Kim, Y.G. and Nunez, G. (2009) NOD-Like Receptors: Role in Innate Immunity and Inflammatory Disease. Annual Review of Pathology, 4, 365-398.
https://doi.org/10.1146/annurev.pathol.4.110807.092239
[11]  Girardin, S.E., Boneca, I.G., Carneiro, L.A., Anti-gnac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M.K., Labigne, A., Zahringer, U., Coyle, A.J., Distefano, P.S., Bertin, J., Sansonetti, P.J. and Philpott, D.J. (2003) Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Pepti-doglycan. Science, 300, 1584-1587.
https://doi.org/10.1126/science.1084677
[12]  Girardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D.J. and Sansonetti, P.J. (2003) Nod2 Is a General Sensor of Peptidoglycan through Muramyl Di-peptide (MDP) Detection. Journal of Biological Chemistry, 278, 8869-8872.
https://doi.org/10.1074/jbc.C200651200
[13]  Mukherjee, T., Hovingh, E.S., Foerster, E.G., Abdel-Nour, M., Philpott, D.J. and Girardin, S.E. (2019) NOD1 and NOD2 in Inflammation, Immunity and Disease. Archives of Bio-chemistry and Biophysics, 670, 69-81.
https://doi.org/10.1016/j.abb.2018.12.022
[14]  Krieg, A., Correa, R.G., Garrison, J.B., Le Negrate, G., Welsh, K., Huang, Z., Knoefel, W.T. and Reed, J.C. (2009) XIAP Mediates NOD Signaling via Interaction with RIP2. Proceedings of the National Academy of Sciences of the United States of America, 106, 14524-14529.
https://doi.org/10.1073/pnas.0907131106
[15]  Damgaard, R.B., Nachbur, U., Yabal, M., Wong, W.W., Fiil, B.K., Kastirr, M., Rieser, E., Rickard, J.A., Bankovacki, A., Peschel, C., Ruland, J., Bekker-Jensen, S., Mailand, N., Kauf-mann, T., Strasser, A., Walczak, H., Silke, J., Jost, P.J. and Gyrd-Hansen, M. (2012) The Ubiquitin Ligase XIAP Re-cruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Molecular Cell, 46, 746-758.
https://doi.org/10.1016/j.molcel.2012.04.014
[16]  Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J. and Chen, Z.J. (2001) TAK1 Is a Ubiquitin-Dependent Kinase of MKK and IKK. Nature, 412, 346-351.
https://doi.org/10.1038/35085597
[17]  Hasegawa, M., Fujimoto, Y., Lucas, P.C., Nakano, H., Fukase, K., Nunez, G. and Inohara, N. (2008) A Critical Role of RICK/RIP2 Polyubiquitination in Nod-Induced NF-κB Activation. EMBO Journal, 27, 373-383.
https://doi.org/10.1038/sj.emboj.7601962
[18]  Watanabe, T., Asano, N., Fichtner-Feigl, S., Gorelick, P.L., Tsuji, Y., Matsumoto, Y., Chiba, T., Fuss, I.J., Kitani, A. and Strober, W. (2010) NOD1 Contributes to Mouse Host Defense against Helicobacter pylori via Induction of Type I IFN and Activation of the ISGF3 Signaling Pathway. Journal of Clinical Investigation, 120, 1645-1662.
https://doi.org/10.1172/JCI39481
[19]  Pandey, A.K., Yang, Y., Jiang, Z., Fortune, S.M., Coulombe, F., Behr, M.A., Fitzgerald, K.A., Sassetti, C.M. and Kelliher, M.A. (2009) NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLOS Pathogens, 5, e1000500.
https://doi.org/10.1371/journal.ppat.1000500
[20]  Moreira, L.O. and Zamboni, D.S. (2012) NOD1 and NOD2 Signaling in Infection and Inflammation. Frontiers in Immunology, 3, Article 328.
https://doi.org/10.3389/fimmu.2012.00328
[21]  Park, J.H., Kim, Y.G., Mcdonald, C., Kanneganti, T.D., Hasegawa, M., Body-Malapel, M., Inohara, N. and Nunez, G. (2007) RICK/RIP2 Mediates Innate Immune Responses Induced through Nod1 and Nod2 but Not TLRs. Journal of Immunology, 178, 2380-2386.
https://doi.org/10.4049/jimmunol.178.4.2380
[22]  Chin, A.I., Dempsey, P.W., Bruhn, K., Miller, J.F., Xu, Y. and Cheng, G. (2002) Involvement of Receptor-Interacting Protein 2 in Innate and Adaptive Immune Responses. Nature, 416, 190-194.
https://doi.org/10.1038/416190a
[23]  Balamayooran, T., Batra, S., Balamayooran, G., Cai, S., Kobayashi, K.S., Flavell, R.A. and Jeyaseelan, S. (2011) Receptor-Interacting Protein 2 Controls Pulmonary Host Defense to Esche-richia coli Infection via the Regulation of Interleukin-17A. Infection and Immunity, 79, 4588-4599.
https://doi.org/10.1128/IAI.05641-11
[24]  Zhang, F.R., Huang, W., Chen, S.M., Sun, L.D., Liu, H., Li, Y., Cui, Y., Yan, X.X., Yang, H.T., Yang, R.D., Chu, T.S., Zhang, C., Zhang, L., Han, J.W., Yu, G.Q., Quan, C., Yu, Y.X., Zhang, Z., Shi, B.Q., Zhang, L.H., Cheng, H., Wang, C.Y., Lin, Y., Zheng, H.F., Fu, X.A., Zuo, X.B., Wang, Q., Long, H., Sun, Y.P., Cheng, Y.L., Tian, H.Q., Zhou, F.S., Liu, H.X., Lu, W.S., He, S.M., Du, W.L., Shen, M., Jin, Q.Y., Wang, Y., Low, H.Q., Erwin, T., Yang, N.H., Li, J.Y., Zhao, X., Jiao, Y.L., Mao, L.G., Yin, G., Jiang, Z.X., Wang, X.D., Yu, J.P., Hu, Z.H., Gong, C.H., Liu, Y.Q., Liu, R.Y., Wang, D.M., Wei, D., Liu, J.X., Cao, W.K., Cao, H.Z., Li, Y.P., Yan, W.G., Wei, S.Y., Wang, K.J., Hibberd, M.L., Yang, S., Zhang, X.J. and Liu, J.J. (2009) Genomewide Association Study of Leprosy. New England Journal of Medicine, 361, 2609-2618.
https://doi.org/10.1056/NEJMoa0903753
[25]  Song, J., Liu, T., Jiao, L., Zhao, Z., Hu, X., Wu, Q., Bai, H., Lv, M., Meng, Z., Wu, T., Chen, H., Chen, X., Song, X. and Ying, B. (2019) RIPK2 Polymorphisms and Susceptibility to Tu-berculosis in a Western Chinese Han Population. Infection, Genetics and Evolution, 75, Article ID: 103950.
https://doi.org/10.1016/j.meegid.2019.103950
[26]  Li,, Z.Z., Tao, L.L., Zhang, J., Zhang, H.J. and Qu, J.M. (2012) Role of NOD2 in Regulating the Immune Response to Aspergillus fumigatus. Inflammation Research, 61, 643-648.
https://doi.org/10.1007/s00011-012-0456-4
[27]  Wu, J., Zhang, Y., Xin, Z. and Wu, X. (2015) The Crosstalk be-tween TLR2 and NOD2 in Aspergillus fumigatus Keratitis. Molecular Immunology, 64, 235-243.
https://doi.org/10.1016/j.molimm.2014.11.021
[28]  Pham, O.H., Lee, B., Labuda, J., Keestra-Gounder, A.M., Byndloss, M.X., Tsolis, R.M. and Mcsorley, S.J. (2020) NOD1/NOD2 and RIP2 Regulate Endoplasmic Reticulum Stress-Induced Inflammation during Chlamydia Infection. mBio, 11, e00979-20.
https://doi.org/10.1128/mBio.00979-20
[29]  Fan, Y.H., Roy, S., Mukhopadhyay, R., Kapoor, A., Duggal, P., Wojcik, G.L., Pass, R.F. and Arav-Boger, R. (2016) Role of Nucleotide-Binding Oligomerization Domain 1 (NOD1) and Its Variants in Human Cytomegalovirus Control in Vitro and in Vivo. Proceedings of the National Academy of Sci-ences of the United States of America, 113, E7818-E7827.
https://doi.org/10.1073/pnas.1611711113
[30]  Eickhoff, J., Hanke, M., Stein-Gerlach, M., Kiang, T.P., Herzberger, K., Habenberger, P., Muller, S., Klebl, B., Marschall, M., Stamminger, T. and Cotten, M. (2004) RICK Activates a NF-κB-Dependent Anti-Human Cytomegalovirus Response. Journal of Biological Chemistry, 279, 9642-9652.
https://doi.org/10.1074/jbc.M312893200
[31]  Kapoor, A., Forman, M. and Arav-Boger, R. (2014) Activation of Nucleotide Oligomerization Domain 2 (NOD2) by Human Cytomegalovirus Initiates Innate Immune Responses and Re-stricts Virus Replication. PLOS ONE, 9, e92704.
https://doi.org/10.1371/journal.pone.0092704
[32]  Kim, Y.G., Park, J.H., Reimer, T., Baker, D.P., Kawai, T., Ku-mar, H., Akira, S., Wobus, C. and Nunez, G. (2011) Viral Infection Augments Nod1/2 Signaling to Potentiate Lethality Associated with Secondary Bacterial Infections. Cell Host & Microbe, 9, 496-507.
https://doi.org/10.1016/j.chom.2011.05.006
[33]  Lupfer, C., Thomas, P.G., Anand, P.K., Vogel, P., Milasta, S., Martinez, J., Huang, G., Green, M., Kundu, M., Chi, H., Xavier, R.J., Green, D.R., Lamkanfi, M., Dinarello, C.A., Doherty, P.C. and Kanneganti, T.D. (2013) Receptor Interacting Protein Kinase 2-Mediated Mitophagy Regulates In-flammasome Activation during Virus Infection. Nature Immunology, 14, 480-488.
https://doi.org/10.1038/ni.2563
[34]  Sparks, J.A. (2019) Rheumatoid Arthritis. Annals of Internal Medicine, 170, ITC1-ITC16.
https://doi.org/10.7326/AITC201901010
[35]  温志华. 类风湿性关节炎发病机制的临床研究进展[J]. 临床医学, 2022, 42(7): 123-125
[36]  Cross, M., Smith, E., Hoy, D., Carmona, L., Wolfe, F., Vos, T., Williams, B., Gabriel, S., Lassere, M., Johns, N., Buchbinder, R., Woolf, A. and March, L. (2014) The Global Burden of Rheumatoid Arthritis: Estimates from the Global Burden of Disease 2010 Study. Annals of the Rheumatic Diseases, 73, 1316-1322.
https://doi.org/10.1136/annrheumdis-2013-204627
[37]  Smolen, J.S., Aletaha, D. and Mcinnes, I.B. (2016) Rheu-matoid Arthritis. The Lancet, 388, 2023-2038.
https://doi.org/10.1016/S0140-6736(16)30173-8
[38]  Sokka, T., Kautiainen, H., Pincus, T., Verstappen, S.M., Aggarwal, A., Alten, R., Andersone, D., Badsha, H., Baecklund, E., Belmonte, M., Craig-Muller, J., Da, Mota, L.M., Dimic, A., Fathi, N.A., Ferraccioli, G., Fukuda, W., Geher, P., Gogus, F., Hajjaj-Hassouni, N., Hamoud, H., Haugeberg, G., Henrohn, D., Horslev-Petersen, K., Ionescu, R., Karateew, D., Kuuse, R., Laurindo, I.M., Lazovskis, J., Luukkainen, R., Mofti, A., Murphy, E., Nakajima, A., Oyoo, O., Pandya, S.C., Pohl, C., Predeteanu, D., Rexhepi, M., Rexhepi, S., Sharma, B., Shono, E., Sibilia, J., Sierakowski, S., Skopouli, F.N., Stropuviene, S., Toloza, S., Valter, I., Woolf, A., Yamanaka, H. and Quest, R.A. (2010) Work Disability Remains a Major Problem in Rheumatoid Arthritis in the 2000s: Data from 32 Countries in the QUEST-RA Study. Arthritis Research & Therapy, 12, Article No. R42.
https://doi.org/10.1186/ar2951
[39]  Deane, K.D., Demoruelle, M.K., Kelmenson, L.B., Kuhn, K.A., Norris, J.M. and Holers, V.M. (2017) Genetic and Environmental Risk Factors for Rheumatoid Arthritis. Best Practice & Research: Clinical Rheumatology, 31, 3-18.
https://doi.org/10.1016/j.berh.2017.08.003
[40]  韩宇飞, 高明利, 刘东武. 类风湿性关节炎的发病机制研究进展综述[J]. 中国卫生标准管理, 2021, 12(1): 162-165.
[41]  谢小倩, 王亚乐, 罗沙沙, 等. 类风湿性关节炎发病机制研究进展[J]. 世界最新医学信息文摘, 2019, 19(71): 109-111
[42]  Franca, R., Vieira, S.M., Talbot, J., Peres, R.S., Pinto, L.G., Zamboni, D.S., Louzada-Junior, P., Cunha, F.Q. and Cunha, T.M. (2016) Expression and Activity of NOD1 and NOD2/RIPK2 Signalling in Mononuclear Cells from Patients with Rheumatoid Arthritis. Scandinavian Journal of Rheumatology, 45, 8-12.
https://doi.org/10.3109/03009742.2015.1047403
[43]  Vieira, S.M., Cunha, T.M., Franca, R.F., Pinto, L.G., Talbot, J., Turato, W.M., Lemos, H.P., Lima, J.B., Verri, W.A., Jr., Almeida, S.C., Ferreira, S.H., Louzada-Junior, P., Zamboni, D.S. and Cunha, F.Q. (2012) Joint NOD2/RIPK2 Signaling Regulates IL-17 Axis and Contributes to the Development of Experimental Arthritis. Journal of Immunology, 188, 5116-5122.
https://doi.org/10.4049/jimmunol.1004190
[44]  Rosen, M.J., Dhawan, A. and Saeed, S.A. (2015) Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatrics, 169, 1053-1060.
https://doi.org/10.1001/jamapediatrics.2015.1982
[45]  Ananthakrishnan, A.N. (2015) Epidemiology and Risk Fac-tors for IBD. Nature Reviews: Gastroenterology & Hepatology, 12, 205-217.
https://doi.org/10.1038/nrgastro.2015.34
[46]  李学锋, 彭霞, 周明欢. 我国炎症性肠病流行病学研究进展[J]. 现代消化及介入诊疗, 2020, 25(9): 1265-1267.
[47]  李惠, 李明松. 中国炎症性肠病的挑战和机遇[J]. 现代消化及介入诊疗, 2019, 24(6): 569-572+582.
[48]  张兰兰, 牛润章, 司依馨. 炎症性肠病的研究现状[J]. 中国实用内科杂志, 2012, 32(S2): 42-45
[49]  赵盈, 宋光. 炎症性肠病: 微生物-宿主因素的研究进展[J]. 现代消化及介入诊疗, 2020, 25(11): 1548-1551.
[50]  姜雨薇, 金丹. 炎症性肠病免疫学发病机制研究进展[J]. 延边大学医学学报, 2014, 37(1): 76-78.
[51]  Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O’morain, C.A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J.F., Sahbatou, M. and Thomas, G. (2001) Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature, 411, 599-603.
https://doi.org/10.1038/35079107
[52]  Stronati, L., Negroni, A., Pierdomenico, M., D’ottavio, C., Tirindelli, D., Di, Nardo, G., Oliva, S., Viola, F. and Cucchiara, S. (2010) Altered Expression of Innate Immunity Genes in Different Intestinal Sites of Children with Ulcerative Colitis. Digestive and Liver Disease, 42, 848-853.
https://doi.org/10.1016/j.dld.2010.04.003
[53]  Negroni, A., Stronati, L., Pierdomenico, M., Tirindelli, D., Di, Nardo, G., Mancini, V., Maiella, G. and Cucchiara, S. (2009) Activation of NOD2-Mediated Intestinal Pathway in a Pediatric Population with Crohn’s Disease. Inflammatory Bowel Diseases, 15, 1145-1154.
https://doi.org/10.1002/ibd.20907
[54]  Watanabe, T., Minaga, K., Kamata, K., Sakurai, T., Komeda, Y., Nagai, T., Kitani, A., Tajima, M., Fuss, I.J., Kudo, M. and Strober, W. (2019) RICK/RIP2 Is a NOD2-Independent Nodal Point of Gut Inflammation. International Immunology, 31, 669-683.
https://doi.org/10.1093/intimm/dxz045
[55]  Pham, A.T., Ghilardi, A.F. and Sun, L. (2023) Recent Advances in the Development of RIPK2 Modulators for the Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 14, Article ID: 1127722.
https://doi.org/10.3389/fphar.2023.1127722
[56]  Windheim, M., Lang, C., Peggie, M., Plater, L.A. and Cohen, P. (2007) Molecular Mechanisms Involved in the Regulation of Cytokine Production by Muramyl Dipeptide. Biochemical Journal, 404, 179-190.
https://doi.org/10.1042/BJ20061704
[57]  Hollenbach, E., Vieth, M., Roessner, A., Neumann, M., Malfertheiner, P. and Naumann, M. (2005) Inhibition of RICK/Nuclear Factor-kappaB and p38 Signaling Attenuates the Inflammatory Response in a Murine Model of Crohn Disease. Journal of Biological Chemistry, 280, 14981-14988.
https://doi.org/10.1074/jbc.M500966200
[58]  Huang, L., Jiang, S. and Shi, Y. (2020) Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001-2020). Journal of Hematology & Oncology, 13, Article No. 143.
https://doi.org/10.1186/s13045-020-00977-0
[59]  Tigno-Aranjuez, J.T., Asara, J.M. and Abbott, D.W. (2010) In-hibition of RIP2’s Tyrosine Kinase Activity Limits NOD2-Driven Cytokine Responses. Genes and Development, 24, 2666-2677.
https://doi.org/10.1101/gad.1964410
[60]  Canning, P., Ruan, Q., Schwerd, T., Hrdinka, M., Maki, J.L., Saleh, D., Suebsuwong, C., Ray, S., Brennan, P.E., Cuny, G.D., Uhlig, H.H., Gyrd-Hansen, M., Degterev, A. and Bullock, A.N. (2015) Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibi-tors. Chemistry and Biology, 22, 1174-1184.
https://doi.org/10.1016/j.chembiol.2015.07.017
[61]  Tigno-Aranjuez, J.T., Benderitter, P., Rombouts, F., Deroose, F., Bai, X., Mattioli, B., Cominelli, F., Pizarro, T.T., Hoflack, J. and Abbott, D.W. (2014) In Vivo Inhibition of RIPK2 Kinase Alleviates Inflammatory Disease. Journal of Biological Chemistry, 289, 29651-29664.
https://doi.org/10.1074/jbc.M114.591388
[62]  Nachbur, U., Stafford, C.A., Bankovacki, A., Zhan, Y., Lindqvist, L.M., Fiil, B.K., Khakham, Y., Ko, H.J., Sandow, J.J., Falk, H., Holien, J.K., Chau, D., Hildebrand, J., Vince, J.E., Sharp, P.P., Webb, A.I., Jackman, K.A., Muhlen, S., Kennedy, C.L., Lowes, K.N., Murphy, J.M., Gyrd-Hansen, M., Parker, M.W., Hartland, E.L., Lew, A.M., Huang, D.C., Lessene, G. and Silke, J. (2015) A RIPK2 Inhibitor Delays NOD Signalling Events Yet Prevents Inflammatory Cytokine Production. Nature Communications, 6, Article No. 6442.
https://doi.org/10.1038/ncomms7442
[63]  Haile, P.A., Votta, B.J., Marquis, R.W., Bury, M.J., Mehlmann, J.F., Singhaus, R., Jr., Charnley, A.K., Lakdawala, A.S., Convery, M.A., Lipshutz, D.B., Desai, B.M., Swift, B., Capriotti, C.A., Berger, S.B., Mahajan, M.K., Reilly, M.A., Rivera, E.J., Sun, H.H., Nagilla, R., Beal, A.M., Finger, J.N., Cook, M.N., King, B.W., Ouellette, M.T., Totoritis, R.D., Pierdomenico, M., Negroni, A., Stronati, L., Cucchiara, S., Ziol-kowski, B., Vossenkamper, A., Macdonald, T.T., Gough, P.J., Bertin, J. and Casillas, L.N. (2016) The Identification and Pharmacological Characterization of 6-(Tert-Butylsulfonyl)-N-(5-Fluoro-1H-Indazol-3-yl)quinolin-4-Amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase. Journal of Medicinal Chemistry, 59, 4867-4880.
https://doi.org/10.1021/acs.jmedchem.6b00211
[64]  Haile, P.A., Casillas, L.N., Votta, B.J., Wang, G.Z., Charnley, A.K., Dong, X., Bury, M.J., Romano, J.J., Mehlmann, J.F., King, B.W., Erhard, K.F., Hanning, C.R., Lipshutz, D.B., Desai, B.M., Capriotti, C.A., Schaeffer, M.C., Berger, S.B., Mahajan, M.K., Reilly, M.A., Nagilla, R., Rivera, E.J., Sun, H.H., Kenna, J.K., Beal, A.M., Ouellette, M.T., Kelly, M., Stemp, G., Convery, M.A., Vossenkamper, A., Macdonald, T.T., Gough, P.J., Bertin, J. and Marquis, R.W. (2019) Discovery of a First-in-Class Receptor Interacting Protein 2 (RIP2) Kinase Specific Clinical Candidate, 2-((4-(Benzo[d]thiazol-5-Ylamino)-6-(Tert-Butylsulfonyl)quinazolin-7-Yl)oxy)ethyl Dihydrogen Phosphate, for the Treatment of Inflammatory Diseases. Journal of Medicinal Chemistry, 62, 6482-6494.
https://doi.org/10.1021/acs.jmedchem.9b00575
[65]  Yuan, X., Chen, Y., Tang, M., Wei, Y., Shi, M., Yang, Y., Zhou, Y., Yang, T., Liu, J., Liu, K., Deng, D., Zhang, C. and Chen, L. (2022) Discovery of Potent and Selective Recep-tor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) Inhibitors for the Treatment of Inflammatory Bowel Diseases (IBDs). Journal of Medicinal Chemistry, 65, 9312-9327.
https://doi.org/10.1021/acs.jmedchem.2c00604

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413