全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Possible Relevance of the Allende Meteorite Conditions in Prebiotic Chemistry: An Insight into the Chondrules and Organic Compounds

DOI: 10.4236/abc.2023.133007, PP. 82-99

Keywords: Allende Meteorite, Carbonaceous Chondrite, Light Microscopy, X-Ray Diffraction with the Rietveld Method, Raman Spectroscopy, Attenuated Total Reflectance Infrared Spectroscopy, Mass Spectrometry, Scanning Electron Mi-croscopy, Energy Dispersive X-Ray Spectroscopy, Magnetic Force Microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.

References

[1]  Brenker, F.E., Palme, H. and Klerner, S. (2000) Evidence for Solar Nebula Signatures in the Matrix of the Allende Meteorite. Earth and Planetary Science Letters, 178, 185-194.
https://doi.org/10.1016/S0012-821X(00)00075-3
[2]  McCoy, T.J. and Corrigan, C.M. (2021) The Allende Meteorite: Landmark and Cautionary Tale. Meteoritics & Planetary Science, 56, 5-7.
https://doi.org/10.1111/maps.13613
[3]  King, E.A., Schonfeld, E., Richardson, K.A. and Eldridge, J.S. (1969) Meteorite Fail at Pueblito de Allende, Chihuahua, Mexico: Preliminary Information. Science, 163, 928-929.
https://doi.org/10.1126/science.163.3870.928
[4]  Clarke, C., Roy S., Jarosewich, E., Mason, B., Nelen, J., Gomez, M. and Hyde, J.R. (1971) Allende, Mexico, Meteorite Shower. Smithsonian Contributions to the Earth Sciences, 1-53.
https://doi.org/10.5479/si.00810274.5.1
[5]  Jarosewich, E., Clarke, C., Roy S. and Barrows, J.N. (1987) Allende Meteorite Reference Sample. Smithsonian Contributions to the Earth Sciences, 1-49.
https://doi.org/10.5479/si.00810274.27.1
[6]  del Sol Hernández-Bernal, M. and Solé, J. (2010) Single Chondrule K-Ar and Pb-Pb Ages of Mexican Ordinary Chondrites as Tracers of Extended Impact Events. Revista mexicana de ciencias geológicas, 27, 123-133.
[7]  Kwok, S. (2016) Complex Organics in Space from Solar System to Distant Galaxies. The Astronomy and Astrophysics Review, 24, Article No. 8.
https://doi.org/10.1007/s00159-016-0093-y
[8]  Irvine, W.M. (1998) Extraterrestrial Organic Matter: A Review. Origins of Life and Evolution of the Biosphere, 28, 365-383.
https://doi.org/10.1023/A:1006574110907
[9]  Cleaves, H. (2013) Prebiotic Chemistry: Geochemical Context and Reaction Screening. Life, 3, 331-345.
https://doi.org/10.3390/life3020331
[10]  Angeles-Camacho, E., Cruz-Castañeda, J., Meléndez, A., Colín-García, M., de la Cruz, K.C., Ramos-Bernal, S., Negrón-Mendoza, A., Garza-Ramos, G., Rodríguez-Zamora, P., Camargo-Raya, C., et al. (2020) Potential Prebiotic Relevance of Glycine Single Crystals Enclosing Fluid Inclusions: An Experimental and Computer Simulation with Static Magnetic Fields. Advances in Biological Chemistry, 10, 140-156.
https://doi.org/10.4236/abc.2020.105011
[11]  Heredia, A., Colín-García, M., Puig, T.P.I., Alba-Aldave, L., Meléndez, A., Cruz-Castañeda, J.A., Basiuk, V.A., Ramos-Bernal, S. and Mendoza, A.N. (2017) Computer Simulation and Experimental Self-Assembly of Irradiated Glycine Amino Acid under Magnetic Fields: Its Possible Significance in Prebiotic Chemistry. Biosystems, 162, 66-74.
https://doi.org/10.1016/j.biosystems.2017.08.008
[12]  Nakashima, S., Kebukawa, Y., Kitadai, N., Igisu, M. and Matsuoka, N. (2018) Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life’s Records, to Natures of the Extant Life. Life, 8, Article 39.
https://doi.org/10.3390/life8040039
[13]  Kletetschka, G. (2018) Magnetization of Extraterrestrial Allende Material May Relate to Terrestrial Descend. Earth and Planetary Science Letters, 487, 1-8.
https://doi.org/10.1016/j.epsl.2018.01.020
[14]  Urrutia-Fucugauchi, J., Pérez-Cruz, L. and Flores-Gutiérrez, D. (2014) Meteorite Paleomagnetism—From Magnetic Domains to Planetary Fields and Core Dynamos. Geofísica Internacional, 53, 343-363.
https://doi.org/10.1016/S0016-7169(14)71510-7
[15]  De Ninno, A. and Congiu Castellano, A. (2014) Influence of Magnetic Fields on the Hydration Process of Amino Acids: Vibrational Spectroscopy Study of L-Phenylalanine and L-Glutamine. Bioelectromagnetics, 35, 129-135.
https://doi.org/10.1002/bem.21823
[16]  McGeoch, J.E.M. and McGeoch, M.W. (2015) Polymer Amide in the Allende and Murchison Meteorites. Meteoritics & Planetary Science, 50, 1971-1983.
https://doi.org/10.1111/maps.12558
[17]  Simon, J.I., Cuzzi, J.N., McCain, K.A., Cato, M.J., Christoffersen, P.A., Fisher, K.R., Srinivasan, P., Tait, A.W., Olson, D.M. and Scargle, J.D. (2018) Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories. Earth and Planetary Science Letters, 494, 69-82.
https://doi.org/10.1016/j.epsl.2018.04.021
[18]  Pizzarello, S., Schrader, D.L., Monroe, A.A. and Lauretta, D.S. (2012) Large Enantiomeric Excesses in Primitive Meteorites and the Diverse Effects of Water in Cosmochemical Evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 11949-11954.
https://doi.org/10.1073/pnas.1204865109
[19]  Sephton, M.A. (2005) Organic Matter in Carbonaceous Meteorites: Past, Present and Future Research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 2729-2742.
https://doi.org/10.1098/rsta.2005.1670
[20]  Zenobi, R., Philippoz, J.M., Buseck, P.R. and Zare, R.N. (1989) Spatially Resolved Organic Analysis of the Allende Meteorite. Science, 246, 1026-1029.
https://doi.org/10.1126/science.246.4933.1026
[21]  Levy, R.L., Wolf, C.J., Grayson, M.A., Gilbert, J., Gelpi, E., Updegrove, W.S., Zlatkis, A. and Oro’, J. (1970) Organic Analysis of the Pueblito de Allende Meteorite. Nature, 227, 148-150.
https://doi.org/10.1038/227148a0
[22]  Han, J., Simoneit, B.R., Burlingame, A.L. and Calvin, M. (1969) Organic Analysis on the Pueblito de Allende Meteorite. Nature, 222, 364-365.
https://doi.org/10.1038/222364a0
[23]  Cruz-Rosas, H.I., Riquelme, F., Santiago, P., Rendón, L., Buhse, T., Ortega-Gutiérrez, F., Borja-Urby, R., Mendoza, D., Gaona, C., Miramontes, P., et al. (2019) Multiwall and Bamboo-like Carbon Nanotubes from the Allende Chondrite: A Probable Source of Asymmetry. PLOS ONE, 14, e0218750.
https://doi.org/10.1371/journal.pone.0218750
[24]  Harris, P.J.F., Vis, R.D. and Heymann, D. (2000) Fullerene-Like Carbon Nanostructures in the Allende Meteorite. Earth and Planetary Science Letters, 183, 355-359.
https://doi.org/10.1016/S0012-821X(00)00277-6
[25]  Hare, P.E., Hoering, T.C. and King, K. (1980) Biogeochemistry of Amino Acids. Warrenton, Virginia, October 29-November 1 1978, Wiley, New York.
[26]  McGeoch, J.E.M. and McGeoch, M.W. (2014) Polymer Amide as an Early Topology. PLOS ONE, 9, e103036.
https://doi.org/10.1371/journal.pone.0103036
[27]  McGeoch, J.E.M. and McGeoch, M.W. (2017) A 4641Da Polymer of Amino Acids in Acfer 086 and Allende Meteorites. arXiv: 1707.09080.
[28]  Zhang, X., Tian, G., Gao, J., Han, M., Su, R., Wang, Y. and Feng, S. (2017) Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents. Origins of Life and Evolution of Biospheres, 47, 413-425.
https://doi.org/10.1007/s11084-016-9520-3
[29]  Lo, Y.H., Liao, C.T., Zhou, J., Rana, A., Bevis, C.S., Gui, G., Enders, B., Cannon, K.M., Yu, Y.S., Celestre, R., et al. (2019) Multimodal X-Ray and Electron Microscopy of the Allende Meteorite. Science Advances, 5, eaax3009.
https://doi.org/10.1126/sciadv.aax3009
[30]  Fisun, O.I. and Savin, A.V. (1992) Homochirality and Long-Range Transfer in Biological Systems. Biosystems, 27, 129-135.
https://doi.org/10.1016/0303-2647(92)90068-A
[31]  Morales-Pérez, A., Moreno-Rodríguez, V., Del Rio-Salas, R., Imam, N.G., González-Méndez, B., Pi-Puig, T., Molina-Freaner, F. and Loredo-Portales, R. (2021) Geochemical Changes of Mn in Contaminated Agricultural Soils Nearby Historical Mine Tailings: Insights from XAS, XRD and, SEP. Chemical Geology, 573, Article ID: 120217.
https://doi.org/10.1016/j.chemgeo.2021.120217
[32]  Toby, B.H. and Von Dreele, R.B. (2013) GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. Journal of Applied Crystallography, 46, 544-549.
https://doi.org/10.1107/S0021889813003531
[33]  Flores-Gutiérrez, D., Urrutia-Fucugauchi, J., Pérez-Cruz, L., Díaz-Hernández, R. and Linares-López, C. (2010) Scanning Electron Microscopy Characterization of Iron, Nickel and Sulfur in Chondrules from the Allende Meteorite—Further Evidence for between-Chondrules Major Compositional Differences. Revista mexicana de ciencias geológicas, 27, 338-346.
[34]  Gucsik, A., Ott, U., Marosits, E., Karczemska, A., Kozanecki, M. and Szurgot, M. (2008) Micro-Raman Study of Nanodiamonds from Allende Meteorite. Proceedings of the International Astronomical Union, 4, 335-340.
https://doi.org/10.1017/S1743921308021893
[35]  Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A. and Kaleńczuk, R.J. (2008) Characterization of Carbon Nanotubes by Raman Spectroscopy. Materials Science Poland, 26, 433-441.
[36]  Breitenfeld, L.B., Dyar, M.D., Carey, C.J., Tague, T.J., Wang, P., Mullen, T. and Parente, M. (2018) Predicting Olivine Composition Using Raman Spectroscopy through Band Shift and Multivariate Analyses. American Mineralogist, 103, 1827-1836.
https://doi.org/10.2138/am-2018-6291
[37]  Avril, C., Malavergne, V., Caracas, R., Zanda, B., Reynard, B., Charon, E., Bobocioiu, E., Brunet, F., Borensztajn, S., Pont, S., et al. (2013) Raman Spectroscopic Properties and Raman Identification of CaS-MgS-MnS-FeS-Cr2FeS4 Sulfides in Meteorites and Reduced Sulfur-Rich Systems. Meteoritics & Planetary Science, 48, 1415-1426.
https://doi.org/10.1111/maps.12145
[38]  Taskaev, S., Skokov, K., Khovaylo, V., Donner, W., Faske, T., Dudorov, A., Gorkavyi, N., Savosteenko, G., Dyakonov, A., Baek, W., et al. (2019) Pele’s Hairs and Exotic Multiply Twinned Graphite Closed-Shell Microcrystals in Meteoritic Dust of Chelyabinsk Superbolide. arXiv: 1905.08003.
[39]  Zega, T. (2004) Serpentine Nanotubes in the Mighei CM Chondrite. Earth and Planetary Science Letters, 223, 141-146.
https://doi.org/10.1016/j.epsl.2004.04.005
[40]  Liesegang, R. (1907) Ueber einige Eigenschaften von Gallerten. Zeitschrift für Chemie und Industrie der Kolloide, 1, Article No. 212.
https://doi.org/10.1007/BF01830142
[41]  Bolser, D., Zega, T.J., Asaduzzaman, A., Bringuier, S., Simon, S.B., Grossman, L., Thompson, M.S. and Domanik, K.J. (2016) Microstructural Analysis of Wark-Love-ring Rims in the Allende and Axtell CV 3 Chondrites: Implications for High-Temperature Nebular Processes. Meteoritics & Planetary Science, 51, 743-756.
https://doi.org/10.1111/maps.12620
[42]  Müller, W.F., Weinbruch, S., Walter, R. and Müller-Beneke, G. (1995) Transmission Electron Microscopy of Chondrule Minerals in the Allende Meteorite: Constraints on the Thermal and Deformational History of Granular Olivine-Pyroxene Chondrules. Planetary and Space Science, 43, 469-483.
https://doi.org/10.1016/0032-0633(94)00181-P
[43]  Goldstein, J.I., Scott, E.R.D. and Chabot, N.L. (2009) Iron Meteorites: Crystallization, Thermal History, Parent Bodies, and Origin. Geochemistry, 69, 293-325.
https://doi.org/10.1016/j.chemer.2009.01.002
[44]  Tachibana, S. (2006) Chondrule Formation and Evolution of the Early Solar System. Journal of Mineralogical and Petrological Sciences, 101, 37-47.
https://doi.org/10.2465/jmps.101.37

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413