全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Equilibrium Energy and Entropy of Vortex Filaments in the Context of Tornadogenesis and Tornadic Flows

DOI: 10.4236/ojfd.2023.133012, PP. 144-176

Keywords: Tornadogenesis, Supercritical Vortices, Vortex Filaments, Negative Temperature, Kinetic Energy, Entropy, Statistical Mechanics, Equilibrium Statistics, Self-Avoiding Walks, Cubic Lattice, Monte-Carlo Techniques, Pivot Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.

References

[1]  Lerner, L. (2020) How One Scientist Reshaped What We Know about Tornadoes.
https://news.uchicago.edu/story/how-one-scientist-reshaped-what-we-know-about-tornadoes
[2]  Fujita, T.T. (1981) Tornadoes and Downbursts in the Context of Generalized Planetary Scales. Journal of the Atmospheric Sciences, 38, 1511-1534.
https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
[3]  Fiedler, B.H. and Rotunno, R. (1986) A Theory for the Maximum Windspeed in Tornado-Like Vortices. Journal of the Atmospheric Sciences, 43, 2328-2440.
https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2
[4]  Chorin, A.J. (1988) Scaling Laws in the Vortex Lattice Model of Turbulence. Communications in Mathematical Physics, 114, 167-176.
https://doi.org/10.1007/BF01218294
[5]  Chorin, A.J. (1990) Constrained Random Walks and Vortex Filaments in Turbulence Theory. Communications in Mathematical Physics, 132, 519-536.
https://doi.org/10.1007/BF02156534
[6]  Chorin, A.J. (1991) Equilibrium Statistics of a Vortex Filament with Applications. Communications in Mathematical Physics, 141, 619-631.
https://doi.org/10.1007/BF02102820
[7]  Chorin, A.J. and Akao, J. (1991) Vortex Equilibria in Turbulence and Quantum Analogues. Physica D: Nonlinear Phenomena, 52, 403-414.
https://doi.org/10.1016/0167-2789(91)90136-W
[8]  Chorin, A.J. (1994) Vorticity and Turbulence. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4419-8728-0
[9]  Snyder, J.C., Bluestein, H.B., Venkatesh, V. and Frasier, S.J. (2013) Observations of Polarimetric Signatures in Supercells by an X-Band Mobile Doppler Radar. Monthly Weather Review, 141, 3-29.
https://doi.org/10.1175/MWR-D-12-00068.1
[10]  Dahl, J.M.L., Parker, M.D. and Wicker, L.J. (2014) Imported and Storm-Generated Near-Ground Vertical Vorticity in a Simulated Supercell. Journal of the Atmospheric Sciences, 71, 3027-3051.
https://doi.org/10.1175/JAS-D-13-0123.1
[11]  Bluestein, H.B., Thiem, K.J., Snyder, J.C. and Houser, J.B. (2019) Tornadogenesis and Early Tornado Evolution in the El Reno, Oklahoma, Supercell on 31 May 2013. Monthly Weather Review, 147, 2045-2066.
https://doi.org/10.1175/MWR-D-18-0338.1
[12]  Davies-Jones, R. (2022) Theory of Parcel Vorticity Evolution in Supercell-Like Flows. Journal of the Atmospheric Sciences, 17, 1253-1270.
https://doi.org/10.1175/JAS-D-21-0178.1
[13]  Scott Peake Weather (2021) EXTREME Close Range Intercept of VIOLENT EF4 Tornado, Ashby MN (Video) YouTube.
https://www.youtube.com/watch?v=UtD8C8ZaOt4
[14]  Timmer, R. (2010) Violent Minnesota Wedge Tornado Intercept!!! (Video) YouTube. https://www.youtube.com/watch?v=AvD2nDyXSQo
[15]  Bělík, P., Dokken, D., Potvin, C., Scholz, K. and Shvartsman, M. (2017) Applications of Vortex Gas Models to Tornadogenesis and Maintenance. Open Journal of Fluid Dynamics, 7, 596-622.
https://doi.org/10.4236/ojfd.2017.74040
[16]  Bělík, P., Dokken, D.P., Potvin, C.K., Scholz, K. and Shvartsman, M.M. (2022) Vortex Gas Models for Tornadogenesis and Maintenance. In: Dong, S.-H., Ed., New Trends in Physical Science Research, Vol. 2, B P International, London, 137-157.
https://doi.org/10.9734/bpi/ntpsr/v2/2138B
[17]  Orf, L., Wilhelmson, R., Lee, B., Finley, C. and Houston, A. (2017) Evolution of a Long-Track Violent Tornado within a Simulated Supercell. Bulletin of the American Meteorological Society, 98, 45-68.
https://doi.org/10.1175/BAMS-D-15-00073.1
[18]  Wurman, J., Kosiba, K., Robinson, P. and Marshall, T. (2014) The Role of Multiple-Vortex Tornado Structure in Causing Storm Researcher Fatalities. Bulletin of the American Meteorological Society, 95, 31-45.
https://doi.org/10.1175/BAMS-D-13-00221.1
[19]  Bluestein, H.B., Thiem, K.J., Snyder, J.C. and Houser, J.B. (2018) The Multiple-Vortex Structure of the El Reno, Oklahoma, Tornado on 31 May 2013. Monthly Weather Review, 146, 2483-2502.
https://doi.org/10.1175/MWR-D-18-0073.1
[20]  Bělk, P., Dahl, B., Dokken, D., Potvin, C., Scholz, K. and Shvartsman, M. (2018) Possible Implications of Self-Similarity for Tornadogenesis and Maintenance. AIMS Mathematics, 3, 365-390.
https://doi.org/10.3934/Math.2018.3.365
[21]  Copling, S., Srinivasan, M. and Sharma, P. (2022) Understanding Model Independent Genetic Mutations through Trends in Increase in Entropy. Open Journal of Biophysics, 12, 165-171.
https://doi.org/10.4236/ojbiphy.2022.123007
[22]  Flandoli, F. (2002) On a Probabilistic descriptIon of Small Scale Structures in 3D Fluids. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 38, 207-228.
https://doi.org/10.1016/S0246-0203(01)01092-5
[23]  Flandoli, F. and Gubinelli, M. (2002) The Gibbs Ensemble of a Vortex Filament. Probab. Probability Theory and Related Fields, 122, 317-340.
https://doi.org/10.1007/s004400100163
[24]  Lions, P.-L. and Majda, A. (2000) Equilibrium Statistical Theory for Nearly Parallel Vortex Filaments. Communications on Pure and Applied Mathematics, 53, 76-142.
https://doi.org/10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L
[25]  Lal, M. (1969) “Monte Carlo” Computer Simulation of Chain Molecules. I. Molecular Physics, 17, 57-69.
https://doi.org/10.1080/00268976900100781
[26]  Madras, N. and Sokal, A.D. (1988) The Pivot Algorithm: A Highly Efficient Monte Carlo Method for the Self-Avoiding Walk. Journal of Statistical Physics, 50, 109-186.
https://doi.org/10.1007/BF01022990
[27]  Chorin, A.J. and Marsden, J.E. (1993) A Mathematical Introduction to Fluid Dynamics. 3rd Edition, Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-0883-9
[28]  Xia, J., Lewellen, D.C. and Lewellen, W.S. (2003) Influence of Mach Number on Tornado Corner Flow Dynamics. Journal of the Atmospheric Sciences, 60, 2820-2825.
https://doi.org/10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2
[29]  Klemp, J.B. (1987) Dynamics of Tornadic Thunderstorms. Annual Review of Fluid Mechanics, 19, 369-402.
https://doi.org/10.1146/annurev.fl.19.010187.002101
[30]  Majda, A.J. and Bertozzi, A. (2001) Vorticity and Incompressible Flows. Cambridge Texts in Applied Mathematics. 1st Edition, Cambridge University Press, Cambridge.
[31]  Lamb, H. (1975) Hydrodynamics. 6th Edition, Cambridge University Press, Cambridge.
[32]  Bachmann, M. (2014) Thermodynamics and Statistical Mechanics of Macromolecular Systems. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139028516
[33]  MacDonald, D., Joseph, S., Hunter, D.L., Moseley, L.L., Jan, N. and Guttmann, A.J. (2000) Self-Avoiding Walks on the Simple Cubic Lattice. Journal of Physics A: Mathematical and General, 33, 5973-5983.
https://doi.org/10.1088/0305-4470/33/34/303
[34]  Schiemann, R., Bachmann, M. and Janke, W. (2005) Exact Enumeration of Three-Dimensional Lattice Proteins. Computer Physics Communications, 166, 8-16.
https://doi.org/10.1016/j.cpc.2004.09.011
[35]  Schram, R.D., Barkema, G.T. and Bisseling, R.H. (2011) Exact Enumeration of Self-Avoiding Walks. Journal of Statistical Mechanics: Theory and Experiment, 2011, Article ID: P06019.
https://doi.org/10.1088/1742-5468/2011/06/P06019
[36]  Landau, L.D. and Lifshitz, E.M. (1958) Statistical Physics. In: Peierls, E. and Peierls, R.F., Eds., Course of Theoretical Physics, Vol. 5, Pergamon Press Ltd., London-Paris.
[37]  Lim, C. and Nebus, J. (2007) Vorticity, Statistical Mechanics and Monte Carlo Simulation. Springer Monographs in Mathematics, Springer, New York.
https://doi.org/10.1007/978-0-387-49431-9
[38]  Kennedy, T. (2001) A Faster Implementation of the Pivot Algorithm for Self-Avoiding Walks. (Preprint)
[39]  Clisby, N. (2013) Calculation of the Connective Constant for Self-Avoiding Walks via the Pivot Algorithm. Journal of Physics A: Mathematical and Theoretical, 46, Article ID: 245001.
https://doi.org/10.1088/1751-8113/46/24/245001
[40]  Madras, N., Orlitsky, A. and Shepp, L.A. (1989) Monte Carlo Generation of Self-Avoiding Walks with Fixed Endpoints and Fixed Length. Journal of Statistical Physics, 58, 159-183.
https://doi.org/10.1007/BF01020290
[41]  Lesh, N., Mitzenmacher, M. and Whitesides, S. (2003) A Complete and Effective Move Set for Simplified Protein Folding. Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology (RECOMB’03), Berlin, 10-14 April 2003, 188-195.
https://doi.org/10.1145/640075.640099
[42]  Deutsch, J.M. (1997) Long Range Moves for High Density Polymer Simulations. The Journal of Chemical Physics, 106, 8849-8854.
https://doi.org/10.1063/1.473943
[43]  Wick, C.D. and Theodorou, D.N. (2004) Connectivity-Altering Monte Carlo Simulations of the End Group Effects on Volumetric Properties for Poly(ethylene oxide). Macromolecules, 37, 7026-7033.
https://doi.org/10.1021/ma049193r
[44]  Wüst, T. and Landau, D.P. (2008) The HP Model of Protein Folding: A Challenging Testing Ground for Wang—Landau Sampling. Computer Physics Communications, 179, 124-127.
https://doi.org/10.1016/j.cpc.2008.01.028
[45]  Wüst, T. and Landau, D.P. (2012) Optimized Wang—Landau Sampling of Lattice Polymers: Ground State Search and Folding Thermodynamics of HP Model Proteins. The Journal of Chemical Physics, 137, Article ID: 064903.
https://doi.org/10.1063/1.4742969
[46]  Berg, B. and Foerster, D. (1981) Random Paths and Random Surfaces on a Digital Computer. Physics Letters B, 106, 323-326.
https://doi.org/10.1016/0370-2693(81)90545-1
[47]  Aragao de Carvalho, C., Caracciolo, S. and Frohlich, J. (1983) Polymers and Theory in Four Dimensions. Nuclear Physics B, 215, 209-248.
https://doi.org/10.1016/0550-3213(83)90213-4
[48]  Caracciolo, S., Pelissetto, A. and Sokal, A.D. (1992) Join- and-Cut Algorithm for Self-Avoiding Walks with Variable Length and Free Endpoints. Journal of Statistical Physics, 67, 65-111.
https://doi.org/10.1007/BF01049027
[49]  Wang, F. and Landau, D.P. (2001) Efficient, Multiple-ranGe Random Walk Algorithm to Calculate the Density of States. Physical Review Letters, 86, 2050-2053.
https://doi.org/10.1103/PhysRevLett.86.2050
[50]  Meirovitch, H. (1983) A Monte Carlo Study of the Entropy, the Pressure and the Critical Behavior of the Hard-Square Lattice Gas. Journal of Statistical Physics, 30, 681-698.
https://doi.org/10.1007/BF01009683
[51]  Schram, R.D., Barkema, G.T. and Bisseling, R.H. (2011) Exact Enumeration of Self-Avoiding Walks. arXiv:1104.2184.
[52]  Cheluvaraja, S. and Meirovitch, H. (2005) Calculation of the Entropy and Free Energy from Monte Carlo Simulations of a Peptide Stretched by an External Force. The Journal of Physical Chemistry B, 109, 21963-21970.
https://doi.org/10.1021/jp052969l
[53]  White, R.P., Funt, J. and Meirovitch, H. (2005) Calculation of the Entropy of Lattice Polymer Models from Monte Carlo Trajectories. Chemical Physics Letters, 410, 430-435.
https://doi.org/10.1016/j.cplett.2005.06.002
[54]  White, R.P. and Meirovitch, H. (2006) Free Volume Hypothetical Scanning Molecular Dynamics Method for the Absolute Free Energy of Liquids. The Journal of Chemical Physics, 124, Article ID: 204108.
https://doi.org/10.1063/1.2199529
[55]  Almalowi, S.J. (2022) Numerical Study Using Statistical and Quantum Approaches for Solving Energy and Navier Stokes Momentum Equations (PDEs). Engineering, 14, 155-162.
https://doi.org/10.4236/eng.2022.143015
[56]  Sasaki, Y.K. (2014) Entropic Balance Theory and Variational Field Lagrangian Formalism: Tornadogenesis. Journal of the Atmospheric Sciences, 71, 2104-2113.
https://doi.org/10.1175/JAS-D-13-0211.1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413