全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物镉耐受基因研究进展及前景
Progress and Prospects of Research on Cadmium Tolerance Genes in Plants

DOI: 10.12677/JOCR.2023.112007, PP. 57-74

Keywords: 重金属耐受基因,定位,克隆,基因表达,调控机制,育种
Heavy Metal Tolerance Genes
, Location, Cloning, Gene Expression, Regulatory Mechanisms, Breeding

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,植物重金属耐受基因研究已成为遗传学和生物技术领域的热门话题。本文综述了该领域在镉耐受基因定位、耐镉基因分子机制研究以及相关表达调控网络方面的最新进展。这些研究揭示了植物在应对重金属镉胁迫时的重要调控机制和基因表达变化规律。借助这些研究成果,新型重金属耐受品种的开发将得到更有效的支持。未来,植物重金属耐受基因研究有望与植物育种相结合,为缓解全球环境污染带来的影响和满足食品需求做出更大的贡献。
In recent years, research on plant heavy metal tolerance genes has become a hot topic in the field of genetics and biotechnology. This article reviews the latest developments in the localization of cadmium tolerance genes, molecular mechanisms of cadmium tolerance genes, and related expression regulation networks. These studies reveal important regulatory mechanisms and gene expression changes in plants in response to heavy metal cadmium stress. With the help of these research results, the development of new heavy metal tolerant varieties will receive more effective support. In the future, research on plant heavy metal tolerance genes is expected to be combined with plant breeding to make greater contributions to mitigating the impact of global environmental pollution and meeting food demand.

References

[1]  田禹璐, 朱宏. 重金属镉对植物胁迫的研究进展[J]. 哈尔滨师范大学自然科学学报, 2015, 31(2): 149-153.
[2]  陈亚奎, 葛登文, 卢滇楠. 镉污染土壤的植物修复技术[J]. 环境生态学, 2020, 2(9): 92-98.
[3]  高培露. 农田重金属污染现状及修复研究进展[J]. 化工管理, 2020(30): 18-19, 22.
[4]  吴江. 农田污染土壤治理及安全利用[J]. 中国资源综合利用, 2021, 39(1): 76-78.
[5]  孟龙, 黄涂海, 陈謇, 等. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[6]  Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A. and Catalano, A. (2020) The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17, Article No. 3782.
https://doi.org/10.3390/ijerph17113782
[7]  王赛怡, 王逸君, 赵亚洲, 侯燕琪. 土壤重金属污染及其植物修复研究进展[J]. 农学学报, 2023, 13(2): 20-23.
[8]  司亮. 转基因植物对土壤中重金属污染修复的应用[J]. 中国林副特产, 2023(1): 75-77.
[9]  李倩. 番茄SlJMJ18和SlJMJ23基因在抗重金属镉胁迫中的功能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨师范大学, 2022.
[10]  Sharma, A., Kapoor, D., Gautam, S., et al. (2022) Heavy Metal Induced Regulation of Plant Biology: Recent Insights. Physiologia Plantarum, 174, e13688.
https://doi.org/10.1111/ppl.13688
[11]  Li, S., Han, X., Lu, Z., et al. (2022) MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. International Journal of Molecular Sciences, 23, Article No. 4463.
https://doi.org/10.3390/ijms23084463
[12]  Zhao, R., Yin, K. and Chen, S. (2022) Hydrogen Sulphide Signalling in Plant Response to Abiotic Stress. Plant Biology, 24, 523-531.
https://doi.org/10.1111/plb.13367
[13]  Wu, D., He, G., Tian, W., et al. (2021) OPT Gene Family Analysis of Potato (Solanum tuberosum) Responding to Heavy Metal Stress: Comparative Omics and CO-Expression Networks Revealed the Underlying Core Templates and Specific Response Patterns. International Journal of Biological Macromolecules, 188, 892-903.
https://doi.org/10.1016/j.ijbiomac.2021.07.183
[14]  Li, D., He, G., Tian, W., et al. (2021) Comparative and Systematic Omics Revealed Low Cd Accumulation of Potato StMTP9 in Yeast: Suggesting a New Mechanism for Heavy Metal Detoxification. International Journal of Molecular Sciences, 22, Article No. 10478.
https://doi.org/10.3390/ijms221910478
[15]  龙思斯. 不同镉来源方式对水稻中镉的吸收与原位阻控剂的研究[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2016.
[16]  陈宝玉, 王洪君, 曹铁华, 等. 不同磷肥浓度下土壤-水稻系统重金属的时空累积特征[J]. 农业环境科学学报, 2010, 29(12): 2274-2280.
[17]  Zheng, X., Zou, D., Wu, Q., et al. (2022) Review on Fate and Bioavailability of Heavy Metals during Anaerobic Digestion and Composting of Animal Manure. Waste Management, 150, 75-89.
https://doi.org/10.1016/j.wasman.2022.06.033
[18]  Hu, J., Chen, G., Xu, K. and Wang, J. (2022) Cadmium in Cereal Crops: Uptake and Transport Mechanisms and Minimizing Strategies. Journal of Agricultural and Food Chemistry, 70, 5961-5974.
https://doi.org/10.1021/acs.jafc.1c07896
[19]  Tao, J. and Lu, L. (2022) Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. Toxics, 10, Article No. 411.
https://doi.org/10.3390/toxics10080411
[20]  Yang, Y., Xiong, J., Tao, L., et al. (2020) Regulatory Mechanisms of Nitrogen (N) on Cadmium (Cd) Uptake and Accumulation in Plants: A Review. Science of the Total Environment, 708, Article ID: 135186.
https://doi.org/10.1016/j.scitotenv.2019.135186
[21]  毛旭, 付天岭, 何腾兵, 等. 苦荞低镉积累品种筛选及富集转运特征分析[J]. 地球与环境, 2022, 50(1): 103-109.
[22]  潘攀, 刘贝贝, 吴琳, 等. 香蕉对砷镉铅的富集转运特征及土壤重金属安全阈值[J]. 热带作物学报, 2021, 42(1): 267-274.
[23]  刘德良, 朱芹. 粤东北银锑矿区周边土壤Cd污染及沙田柚、香蕉的富集特征[J]. 衡阳师范学院学报, 2021, 42(6): 75-79.
[24]  陈晓燕. 不同品种白菜对黄壤镉的富集特征及其安全生产阈值研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2019.
[25]  陈辰, 朱园辰, 喇乐鹏, 等. 典型黑土环境下的高、低镉积累白菜品种筛选及耐性比较[J]. 农业环境科学学报, 2020, 39(3): 462-472.
[26]  田效琴, 李卓, 刘永红. 成都平原农田镉污染情况及油菜镉吸收特征[J]. 农业环境科学学报, 2017, 36(3): 496-506.
[27]  卞建林, 郭俊娒, 王学东, 等. 两种不同镉富集能力油菜品种耐性机制[J]. 环境科学, 2020, 41(2): 970-978.
[28]  张福顺, 刘威. 重金属镉对甜菜中几种微量元素吸收的影响特点[J]. 中国农学通报, 2017, 33(19): 29-33.
[29]  郭晓静, 胡承孝, 赵小虎, 等. 不同种植模式下蔬菜吸收积累镉的差异[J]. 浙江农业学报, 2015, 27(8): 1387-1393.
[30]  郭晓静. 镉污染土壤上六种种植模式蔬菜产量和镉积累的差异[D]: [硕士学位论文]. 武汉: 华中农业大学, 2012.
[31]  叶亦心. 马铃薯品种与器官镉积累差异的生理和分子机制研究[D]: [博士学位论文]. 长沙: 湖南农业大学, 2021.
[32]  白荣辉. 不同水稻品种稻谷对土壤中镉富集特性初探[J]. 福建农业科技, 2021, 52(3): 28-31.
[33]  常海伟, 桂娟, 黎红亮. 土壤-水稻系统镉迁移富集影响因素研究进展[J]. 环境科学与技术, 2022, 45(S1): 282-295.
[34]  游梦, 邹茸, 王丽, 等. 不同富集植物与小麦间作对镉吸收转运的影响[J]. 中国土壤与肥料, 2022(4): 201-208.
[35]  符云聪, 朱晓龙, 袁毳, 等. 小麦对镉的吸收、富集及其镉污染预测研究进展[J]. 中国农学通报, 2020, 36(6): 37-41.
[36]  潘慧. 不同类型大豆品种镉吸收积累特点和转运机理的研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2016.
[37]  王飞, 王建国, 刘登望, 等. 不同花生品种对稻田镉富集及转运的研究[J]. 中国油料作物学报, 2019, 41(4): 568-576.
[38]  陆紫微. 花生吸收和转运镉的生理机制[D]: [硕士学位论文]. 淮北: 淮北师范大学, 2014.
[39]  张才灵 ,罗楠, 智霞, 等. 香蕉皮和香蕉叶对重金属Cd2+离子的吸附性能研究[J]. 广州化工, 2013, 41(14): 52-55.
[40]  李鸿, 甘志勇. 多因子系数法用于广西水稻田土壤镉危害风险评价[J]. 农业研究与应用, 2021, 34(1): 53-58.
[41]  Ismael, M.A., Elyamine, A.M., Moussa, M.G., et al. (2019) Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics, 11, 255-277.
https://doi.org/10.1039/C8MT00247A
[42]  Gu, Q., Wang, C., Xiao, Q., Chen, Z. and Han, Y. (2021) Melatonin Confers Plant Cadmium Tolerance: An Update. International Journal of Molecular Sciences, 22, Article No. 11704.
https://doi.org/10.3390/ijms222111704
[43]  Wang, H., Cao, Q., Zhao, Q., Arfan, M. and Liu, W. (2020) Mechanisms Used by DNA MMR System to Cope with Cadmium-Induced DNA Damage in Plants. Chemosphere, 246, Article ID: 125614.
https://doi.org/10.1016/j.chemosphere.2019.125614
[44]  Li, Y., Rahman, S.U., Qiu, Z., et al. (2023) Toxic Effects of Cadmium on the Physiological and Biochemical Attributes of Plants, and Phytoremediation Strategies: A Review. Environmental Pollution, 325, Article ID: 121433.
https://doi.org/10.1016/j.envpol.2023.121433
[45]  Raza, A., Habib, M., Kakavand, S.N., et al. (2020) Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology, 9, Article No. 177.
https://doi.org/10.3390/biology9070177
[46]  李德明, 朱祝军. 镉对植物光合作用的影响[J]. 广东微量元素科学, 2005, 12(5): 61-65.
[47]  Shahid, M., Dumat, C., Khalid, S., Niazi, N.K. and Antunes, P.M.C. (2016) Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. In: de Voogt, P., Ed., Reviews of Environmental Contamination and Toxicology, Vol. 241, Springer, Cham, 73-137.
https://doi.org/10.1007/398_2016_8
[48]  Podar, D. and Maathuis, F.J.M. (2022) The Role of Roots and Rhizosphere in Providing Tolerance to Toxic Metals and Metalloids. Plant, Cell & Environment, 45, 719-736.
https://doi.org/10.1111/pce.14188
[49]  Asgher, M., Khan, M.I.R., Anjum, N.A. and Khan, N.A. (2015) Minimising Toxicity of Cadmium in Plants—Role of Plant Growth Regulators. Protoplasma, 252, 399-413.
https://doi.org/10.1007/s00709-014-0710-4
[50]  Chmielowska-B?k, J., Gzyl, J., Rucińska-Sobkowiak, R., Arasimowicz-Jelonek, M. and Deckert, J. (2014) The New Insights into Cadmium Sensing. Frontiers in Plant Science, 5, Article 245.
https://doi.org/10.3389/fpls.2014.00245
[51]  Zhang, H. and Reynolds, M. (2019) Cadmium Exposure in Living Organisms: A Short Review. Science of the Total Environment, 678, 761-767.
https://doi.org/10.1016/j.scitotenv.2019.04.395
[52]  Filipi?, M. (2012) Mechanisms of Cadmium Induced Genomic Instability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 733, 69-77.
https://doi.org/10.1016/j.mrfmmm.2011.09.002
[53]  Yang, G.-L., Zheng, M.-M., Tan, A.-J., et al. (2021) Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. Biology, 10, Article No. 544.
https://doi.org/10.3390/biology10060544
[54]  Maurel, C., Boursiac, Y., Luu, D.-T., et al. (2015) Aquaporins in Plants. Physiological Reviews, 95, 1321-1358.
https://doi.org/10.1152/physrev.00008.2015
[55]  Byrt, C.S., Zhao, M., Kourghi, M., et al. (2017) Non-Selective Cation Channel Activity of Aquaporin AtPIP2;1 Regulated by Ca2+ and pH. Plant, Cell & Environment, 40, 802-815.
https://doi.org/10.1111/pce.12832
[56]  Han, X., Zhang, C., Wang, C., Huang, Y. and Liu, Z. (2019) Gadolinium Inhibits Cadmium Transport by Blocking Non-Selective Cation Channels in Rice Seedlings. Ecotoxicology and Environmental Safety, 179, 160-166.
https://doi.org/10.1016/j.ecoenv.2019.04.057
[57]  Gao, L.J., Liu, X.P., Gao, K.K., et al. (2023) ART1 and Putrescine Contribute to Rice Aluminum Resistance via OsMYB30 in Cell Wall Modification. Journal of Integrative Plant Biology, 65, 934-949.
https://doi.org/10.1111/jipb.13429
[58]  Ward, J.M., M?ser, P. and Schroeder, J.I. (2009) Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses. Annual Review of Physiology, 71, 59-82.
https://doi.org/10.1146/annurev.physiol.010908.163204
[59]  Modareszadeh, M., Bahmani, R., Kim, D. and Hwang, S. (2021) CAX3 (Cation/Proton Exchanger) Mediates a Cd Tolerance by Decreasing ROS through Ca Elevation in Arabidopsis. Plant Molecular Biology, 105, 115-132.
https://doi.org/10.1007/s11103-020-01072-1
[60]  Wu, X., Su, N., Yue, X., et al. (2021) IRT1 and ZIP2 Were Involved in Exogenous Hydrogen-Rich Water-Reduced Cadmium Accumulation in Brassica chinensis and Arabidopsis thaliana. Journal of Hazardous Materials, 407, Article ID: 124599.
https://doi.org/10.1016/j.jhazmat.2020.124599
[61]  Lu, Y., Yu, M., Jia, Y., et al. (2022) Structural Basis for the Activity Regulation of a Potassium Channel AKT1 from Arabidopsis. Nature Communications, 13, Article No. 5682.
https://doi.org/10.1038/s41467-022-33420-8
[62]  Gayomba, S.R., Jung, H.-I., Yan, J., et al. (2013) The CTR/COPT-Dependent Copper Uptake and SPL7-Dependent Copper Deficiency Responses Are Required for Basal Cadmium Tolerance in A. thaliana. Metallomics, 5, 1262-1275.
https://doi.org/10.1039/c3mt00111c
[63]  Meng, Y., Huang, J., Jing, H., et al. (2022) Exogenous Abscisic Acid Alleviates Cd Toxicity in Arabidopsis thaliana by Inhibiting Cd Uptake, Translocation and Accumulation, and Promoting Cd Chelation and Efflux. Plant Science, 325, Article ID: 111464.
https://doi.org/10.1016/j.plantsci.2022.111464
[64]  牛力华. 植物根部对重金属固着作用的研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2012.
[65]  杜倩. 植物对锰、铜、锌、镍的固着作用研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2014.
[66]  Ondrasek, G., Romi?, D., Tanaskovik, V., et al. (2022) Humates Mitigate Cd Uptake in the Absence of NaCl Salinity, but Combined Application of Humates and NaCl Enhances Cd Mobility & Phyto-Accumulation. Science of the Total Environment, 847, Article ID: 157649.
https://doi.org/10.1016/j.scitotenv.2022.157649
[67]  Ondrasek, G., Romic, D. and Rengel, Z. (2020) Interactions of Humates and Chlorides with Cadmium Drive Soil Cadmium Chemistry and Uptake by Radish Cultivars. Science of the Total Environment, 702, Article ID: 134887.
https://doi.org/10.1016/j.scitotenv.2019.134887
[68]  张硕. 根际阴离子背景、pH值以及钙、钾离子浓度对水稻根系镉吸收和转运的效应分析[D]: [硕士学位论文]. 杭州: 浙江大学, 2020.
[69]  Qu, C., Chen, J., Mortimer, M., et al. (2022) Humic Acids Restrict the Transformation and the Stabilization of Cd by Iron (Hydr)Oxides. Journal of Hazardous Materials, 430, Article ID: 128365.
https://doi.org/10.1016/j.jhazmat.2022.128365
[70]  Zhou, Y., Assmann, S.M. and Jegla, T. (2021) External Cd2+ and Protons Activate the Hyperpolarization-Gated K+ Channel KAT1 at the Voltage Sensor. Journal of General Physiology, 153, e202012647.
https://doi.org/10.1085/jgp.202012647
[71]  Sutter, J.-U., Sieben, C., Hartel, A., et al. (2007) Abscisic Acid Triggers the Endocytosis of the Arabidopsis KAT1 K+ Channel and Its Recycling to the Plasma Membrane. Current Biology, 17, 1396-1402.
https://doi.org/10.1016/j.cub.2007.07.020
[72]  魏佳, Tiika Richard John, 段慧荣, 等. NaCl胁迫下黑果枸杞幼苗生长及Na+、K+吸收与分配的变化[J]. 西北农业学报, 2022, 31(2): 193-201.
[73]  Li, Y., Azeem, M., Luo, Y., et al. (2022) Phosphate Capture from Biogas Slurry with Magnesium-Doped Biochar Composite Derived from Lycium chinensis Branch Filings: Performance, Mechanism, and Effect of Coexisting Ions. Environmental Science and Pollution Research, 29, 84873-84885.
https://doi.org/10.1007/s11356-022-21625-9
[74]  Zhang, Y., Wang, Z., Liu, Y., et al. (2023) Plasma Membrane-Associated Calcium Signaling Modulates Cadmium Transport. New Phytologist, 238, 313-331.
https://doi.org/10.1111/nph.18698
[75]  Menguer, P.K., Farthing, E., Peaston, K.A., et al. (2013) Functional Analysis of the Rice Vacuolar Zinc Transporter OsMTP1. Journal of Experimental Botany, 64, 2871-2883.
https://doi.org/10.1093/jxb/ert136
[76]  Chen, J., Yang, L., Yan, X., et al. (2016) Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis. Plant Physiology, 171, 707-719.
https://doi.org/10.1104/pp.15.01882
[77]  Vert, G., Grotz, N., Dédaldéchamp, F., et al. (2021) CORRECTION: IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. Plant Cell, 33, 439-440.
https://doi.org/10.1093/plcell/koaa033
[78]  Quintana, J., Bernal, M., Scholle, M., et al. (2022) Root-to-Shoot Iron Partitioning in Arabidopsis Requires IRON-REGULATEDTRANSPORTER1 (IRT1) Protein but Not Its Iron(II) Transport Function. The Plant Journal, 109, 992-1013.
https://doi.org/10.1111/tpj.15611
[79]  Abuzeineh, A., Vert, G. and Zelazny, E. (2022) Birth, Life and Death of the Arabidopsis IRT1 Iron Transporter: The Role of Close Friends and Foes. Planta, 256, Article No. 112.
https://doi.org/10.1007/s00425-022-04018-7
[80]  Zheng, X., Chen, L. and Li, X. (2018) Arabidopsis and Rice Showed a Distinct Pattern in ZIPs Genes Expression Profile in Response to Cd Stress. Botanical Studies, 59, Article No. 22.
https://doi.org/10.1186/s40529-018-0238-6
[81]  Luo, J.-S., Yang, Y., Gu, T., Wu, Z. and Zhang, Z. (2019) The Arabidopsis Defensin Gene AtPDF2.5 Mediates Cadmium Tolerance and Accumulation. Plant, Cell & Environment, 42, 2681-2695.
https://doi.org/10.1111/pce.13592
[82]  Li, D., He, T., Saleem, M. and He, G. (2022) Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. International Journal of Molecular Sciences, 23, Article No. 1734.
https://doi.org/10.3390/ijms23031734
[83]  Zhang, J., Zhu, Y., Yu, L., et al. (2022) Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryzasativa L.). Cells, 11, Article No. 569.
https://doi.org/10.3390/cells11030569
[84]  Sheng, Y., Yan, X., Huang, Y., et al. (2019) The WRKY Transcription Factor, WRKY13, Activates PDR8 Expression to Positively Regulate Cadmium Tolerance in Arabidopsis. Plant, Cell & Environment, 42, 891-903.
https://doi.org/10.1111/pce.13457
[85]  Takahashi, R., Ito, M. and Kawamoto, T. (2021) The Road to Practical Application of Cadmium Phytoremediation Using Rice. Plants, 10, Article No. 1926.
https://doi.org/10.3390/plants10091926
[86]  Wong, C.K.E. and Cobbett, C.S. (2009) HMA P-Type ATPases Are the Major Mechanism for Root-to-Shoot Cd Translocation in Arabidopsis thaliana. New Phytologist, 181, 71-78.
https://doi.org/10.1111/j.1469-8137.2008.02638.x
[87]  Fang, X.Z., Fang, S.Q., Ye, Z.Q., et al. (2021) NRT1.1 Dual-Affinity Nitrate Transport/Signalling and Its Roles in Plant Abiotic Stress Resistance. Frontiers in Plant Science, 12, Article 715694.
https://doi.org/10.3389/fpls.2021.715694
[88]  Jian, S., Luo, J., Liao, Q., et al. (2019) NRT1.1 Regulates Nitrate Allocation and Cadmium Tolerance in Arabidopsis. Frontiers in Plant Science, 10, Article 384.
https://doi.org/10.3389/fpls.2019.00384
[89]  Fasani, E., Manara, A., Martini, F., Furini, A., and DalCorso, G. (2018) The Potential of Genetic Engineering of Plants for the Remediation of Soils Contaminated with Heavy Metals. Plant, Cell & Environment, 41, 1201-1232.
https://doi.org/10.1111/pce.12963
[90]  Rai, P.K., Kim, K.-H., Lee, S.S. and Lee, J.-H. (2020) Molecular Mechanisms in Phytoremediation of Environmental Contaminants and Prospects of Engineered Transgenic Plants/Microbes. Science of the Total Environment, 705, Article ID: 135858.
https://doi.org/10.1016/j.scitotenv.2019.135858
[91]  Wu, Y., Ma, L., Liu, Q., et al. (2020) The Plant-Growth Promoting Bacteria Promote Cadmium Uptake by Inducing a Hormonal Crosstalk and Lateral Root Formation in a Hyperaccumulator Plant Sedum alfredii. Journal of Hazardous Materials, 395, Article ID: 122661.
https://doi.org/10.1016/j.jhazmat.2020.122661
[92]  Zhang, L., Gao, C., Chen, C., et al. (2020) Overexpression of Rice OsHMA3 in Wheat Greatly Decreases Cadmium Accumulation in Wheat Grains. Environmental Science & Technology, 54, 10100-10108.
https://doi.org/10.1021/acs.est.0c02877
[93]  Lu, Z., Chen, S., Han, X., et al. (2020) A Single Amino Acid Change in Nramp6 from Sedum Alfredii Hance Affects Cadmium Accumulation. International Journal of Molecular Sciences, 21, Article No. 3169.
https://doi.org/10.3390/ijms21093169
[94]  Zheng, T., Lu, X., Yang, F. and Zhang, D. (2022) Synergetic Modulation of Plant Cadmium Tolerance via MYB75- Mediated ROS Homeostasis and Transcriptional Regulation. Plant Cell Reports, 41, 1515-1530.
https://doi.org/10.1007/s00299-022-02871-0
[95]  Song, J., Feng, S.J., Chen, J., Zhao, W.T. and Yang, Z.M. (2017) A Cadmium Stress-Responsive Gene AtFC1 Confers Plant Tolerance to Cadmium Toxicity. BMC Plant Biology, 17, Article No. 187.
https://doi.org/10.1186/s12870-017-1141-0
[96]  Jing, Y., Shi, L., Li, X., Zheng, H. and He, L. (2019) AGP30: Cd Tolerance Related Gene Associate with Mitochondrial Pyruvate Carrier 1. Plant Signaling & Behavior, 14, Article 1629269.
https://doi.org/10.1080/15592324.2019.1629269
[97]  Zhang, L., Ding, H., Jiang, H., et al. (2020) Regulation of Cadmium Tolerance and Accumulation by miR156 in Arabidopsis. Chemosphere, 242, Article ID: 125168.
https://doi.org/10.1016/j.chemosphere.2019.125168
[98]  Yan, X., Huang, Y., Song, H., et al. (2021) A MYB4-MAN3-Mannose-MNB1 Signaling Cascade Regulates Cadmium Tolerance in Arabidopsis. PLOS Genetics, 17, e1009636.
https://doi.org/10.1371/journal.pgen.1009636
[99]  Zhang, Q., Cai, W., Ji, T.-T., et al. (2020) WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production. Plant Physiology, 183, 345-357.
https://doi.org/10.1104/pp.19.01504
[100]  Zhang, P., Wang, R., Ju, Q., et al. (2019) The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation. Plant Physiology, 180, 529-542.
https://doi.org/10.1104/pp.18.01380
[101]  Barabasz, A., Klimecka, M., Kendziorek, M., et al. (2016) The Ratio of Zn to Cd Supply as a Determinant of Metal-Homeostasis Gene Expression in Tobacco and Its Modulation by Overexpressing the Metal exporter ATHMA4. Journal of Experimental Botany, 67, 6201-6214.
https://doi.org/10.1093/jxb/erw389
[102]  Zhu, J., Wang, W.-S., Ma, D., et al. (2016) A Role for CK2 β Subunit 4 in the Regulation of Plant Growth, Cadmium Accumulation and H2O2 Content under Cadmium Stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 109, 240-247.
https://doi.org/10.1016/j.plaphy.2016.10.004
[103]  Cai, S.-Y., Zhang, Y., Xu, Y.-P., et al. (2017) HsfA1a Upregulates Melatonin Biosynthesis to Confer Cadmium Tolerance in Tomato Plants. Journal of Pineal Research, 62, e12387.
https://doi.org/10.1111/jpi.12387
[104]  Ding, Y., Gong, S., Wang, Y., et al. (2018) MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice. Plant Physiology, 177, 1691-1703.
https://doi.org/10.1104/pp.18.00485
[105]  Zhang, Y., Sa, G., Zhang, Y., et al. (2021) Populus euphratica Annexin1 Facilitates Cadmium Enrichment in transgenic Arabidopsis. Journal of Hazardous Materials, 405, Article ID: 124063.
https://doi.org/10.1016/j.jhazmat.2020.124063
[106]  Ding, Y., Wang, Y., Jiang, Z., et al. (2017) MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress. Journal of Agricultural and Food Chemistry, 65, 5860-5867.
https://doi.org/10.1021/acs.jafc.7b01164
[107]  Han, Y., Fan, T., Zhu, X., et al. (2019) WRKY12 Represses GSH1 Expression to Negatively Regulate Cadmium Tolerance in Arabidopsis. Plant Molecular Biology, 99, 149-159.
https://doi.org/10.1007/s11103-018-0809-7
[108]  Xu, Z., Wang, M., Xu, D. and Xia, Z. (2020) The Arabidopsis APR2 Positively Regulates Cadmium Tolerance through Glutathione-Dependent Pathway. Ecotoxicology and Environmental Safety, 187, Article ID: 109819.
https://doi.org/10.1016/j.ecoenv.2019.109819
[109]  Lin, T., Yang, W., Lu, W., Wang, Y. and Qi, X. (2017) Transcription Factors PvERF15 and PvMTF-1 Form a Cadmium Stress Transcriptional Pathway. Plant Physiology, 173, 1565-1573.
https://doi.org/10.1104/pp.16.01729
[110]  Gu, S., Wang, X., Bai, J., et al. (2021) The Kinase CIPK11 Functions as a Positive Regulator in Cadmium Stress Response in Arabidopsis. Gene, 772, Article ID: 145372.
https://doi.org/10.1016/j.gene.2020.145372
[111]  Yang, G., Fu, S., Huang, J., et al. (2021) The Tonoplast-Localized Transporter OsABCC9 Is Involved in Cadmium Tolerance and Accumulation in Rice. Plant Science, 307, Article ID: 110894.
https://doi.org/10.1016/j.plantsci.2021.110894
[112]  Yao, X., Cai, Y., Yu, D. and Liang, G. (2018) BHLH104 Confers Tolerance to Cadmium stress in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60, 691-702.
https://doi.org/10.1111/jipb.12658
[113]  Kong, X., Li, C., Zhang, F., et al. (2018) Ethylene Promotes Cadmium-Induced Root Growth Inhibition through EIN3 Controlled XTH33 and LSU1 Expression in Arabidopsis. Plant, Cell & Environment, 41, 2449-2462.
https://doi.org/10.1111/pce.13361

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413