全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宽带增透膜的制备及其低损耗特性的研究进展
Research Progress on Preparation of Broad-band Anti-Reflection Film and Its Low Loss Properties

DOI: 10.12677/AMC.2023.112005, PP. 41-50

Keywords: 宽带增透膜,低损耗特性,光学薄膜;Broadband Anti-Reflection Films, Low Loss Properties, Optical Films

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要介绍了宽带增透膜的制备及其低损耗特性的研究进展。从日常生活到国家武器,光学薄膜的身影无处不在。而增透膜作为光学薄膜里应用范围最为广泛、使用率最高的光学薄膜,在我们的生活中发挥着重要作用。增透膜可以降低光的反射,提高光学系统的透过率,在不同类型的光学薄膜中,增透膜在推进光学技术的整体发展中发挥了重要作用。一般情况下,采用单层增透膜很难达到理想的增透效果,为了在单波长实现零反射,或在较宽的光谱区达到好的增透效果,往往采用双层、三层甚至更多层数的减反射膜。本文综合了国内外对宽带增透薄膜的研究状况,介绍了目前常用的一些薄膜的制造方法和技术特性以及薄膜的低损耗特性。根据当前的研究状况,对薄膜的应用进行了预测。
This paper focuses on progress in the preparation of broadband permeability-enhancing films and their low-loss properties. Optical films are everywhere, from everyday life to national weapons. As the most widely used optical film, transparency-enhancing films play an important role in our daily life. Among the different types of optical films, transparency-enhancing films play an important role in advancing the overall development of optical technology by reducing the reflection of light and increasing the transmission rate of optical systems. In general, it is difficult to achieve the desired transmission enhancement effect with a single layer of transparency-enhancing film. In order to achieve zero reflection at a single wavelength, or to achieve good transmission enhancement in a wider spectral region, double, triple or even more layers of reflectance-reducing films are often used. This paper synthesizes the research status of broadband transmission enhancement films at home and abroad, and introduces the manufacturing methods and technical characteristics of some commonly used films as well as the low loss characteristics of the films. Based on the current state of research, predictions are made for the application of the films.

References

[1]  黄华义. 玻璃表面镀制增透膜的机理分析[J]. 国外建材科技, 2008, 29(6): 34-38.
[2]  宋冠宇, 涂洁磊, 徐晓壮, 等. 四结GaAs太阳电池宽带减反射膜的设计与分析[J]. 云南师范大学学报(自然科学版), 2019, 39(5): 11-14.
[3]  王彦青, 王秀峰, 江红涛, 等. 硅太阳能电池减反射膜的研究进展[J]. 材料导报, 2012, 26(19): 151-156.
[4]  李艺杰. 柔性太阳电池减反膜的制备研究[D]: [硕士学位论文]. 温州: 温州大学, 2019: 9-12.
[5]  杨志通, 周伯川, 刘思远, 等. 模板复制结合PDMS收缩制备太阳能电池减反膜[J]. 温州大学学报(自然科学版), 2019, 40(3): 45-52.
[6]  白宇, 李君君, 邱清卿, 等. 95%高双面率异质结太阳电池的叠层减反射研究[J]. 功能材料与器件学报, 2022, 28(5): 469-474.
[7]  Lee, Y., Gong, D., Balaji, N., et al. (2012) Stability of SiNX/SiNX Double Stack Antireflection Coating for Single Crystalline Silicon Solar Cells. Nanoscale Research Letters, 7, Article No. 50.
https://doi.org/10.1186/1556-276X-7-50
[8]  Klobukowski, E.R., Tenhaeff, W.E., McCamy, J.W., et al. (2013) Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels. Journal of Materials Chemistry C, 1, 6188-6190.
https://doi.org/10.1039/c3tc31465k
[9]  朱登华, 李旺, 刘石勇, 等. LPCVD法在制绒单晶硅片衬底上制备ZnO:B透明导电薄膜及其性能的研究[J]. 人工晶体学报, 2015, 44(1): 19-23+37.
[10]  Yin, C., Zhu, M., Zeng, T., et al. (2021) HfO2/SiO2 Anti-Reflection Films for UV Lasers via Plasma-Enhanced Atomic Layer Deposition. Journal of Alloys and Com-pounds, 859, Article ID: 157875.
https://doi.org/10.1016/j.jallcom.2020.157875
[11]  Hang, L., Liu, W., Zhang, X., et al. (2023) Design and Preparation of High-Transmittance Broadband Antireflection Coatings with Tailored Refractive Indices Deposited by PECVD. Vacuum, 208, Article ID: 111714.
https://doi.org/10.1016/j.vacuum.2022.111714
[12]  Li, Z., Fan, Z., Zhou, J., et al. (2023) Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer. Applied Sciences, 13, Article No. 3660.
https://doi.org/10.3390/app13063660
[13]  甘国友, 郭玉忠, 苏云生. 溶胶-凝胶法薄膜制备工艺及其应用[J]. 昆明理工大学学报, 1997(1): 146-149.
[14]  Racheva, T.M. and Critchlow, G.W. (1997) SnO2 Thin Films Prepared by the Sol-Gel Process. Thin Solid Films, 292, 299-302.
https://doi.org/10.1016/S0040-6090(96)08956-0
[15]  Biswas, P.K., Devi, P.S., Chakraborty, P.K., et al. (2003) Porous Anti-Reflective Silica Coatings with a High Spectral Coverage by Sol-Gel Spin Coating Technique. Journal of Materials Science Letters, 22, 181-183.
https://doi.org/10.1023/A:1022241707860
[16]  刘永生, 谷民安, 杨晶晶, 等. 太阳电池用低折射率纳米晶减反射膜研究[J]. 华东电力, 2010, 38(11): 1794-1797.
[17]  Verma, A. and Vijayan, N. (2013) Sol-Gel-Derived Nanocrystalline Alu-minum-Doped Zinc Oxide Thin Films for Use as Antireflection Coatings in Silicon Solar Cells. Journal of Materials Research, 28, 2990-2995.
https://doi.org/10.1557/jmr.2013.273
[18]  赵松楠, 吕海兵, 王韬, 等. 溶胶-凝胶双层三波长增透膜制备[J]. 强激光与粒子束, 2015, 27(1): 169-172.
[19]  Sun, L., Chen, S., Yang, F., et al. (2018) Fabrication and Properties of Broadband An-tireflective Coatings on Inert Perfluoropolymer Films Treated by Inductively Coupled Oxygen Plasma. Optics Letters, 43, 4969-4972.
https://doi.org/10.1364/OL.43.004969
[20]  Yan, G., Yuan, Y. and Hong, R. (2018) Preparation of Broadband Antireflec-tive Coatings with Ultra-Low Refractive Index Layer by Sol-Gel Method. Construction and Building Materials, 176, 75-80.
https://doi.org/10.1016/j.conbuildmat.2018.05.016
[21]  Fardo, F.M., Ribeiro, R.S., Strauss, J.A., et al. (2020) Double Layer SiO2-TiO2 Sol-Gel Thin Films on Glass for Antireflection, Antifogging, and UV Recoverable Self-Cleaning. Applied Op-tics, 59, 7720-7725.
https://doi.org/10.1364/AO.397484
[22]  沈斌, 张旭, 熊怀, 等. 溶胶凝胶ZrO2/SiO2宽带减反膜的制备与性能[J]. 光学学报, 2023, 1-14.
[23]  Manna, S., Adak, D., Manna, S., et al. (2023) Antireflection Cum Photocatalytic with Superhy-drophilic Based Durable Single Layer Mesoporous TiO2-ZrO2 Coating Surface for Efficient Solar Photovoltaic Application. Sustainable Energy Technologies and Assessments, 57, Article ID: 103236.
https://doi.org/10.1016/j.seta.2023.103236
[24]  刘生忠, 曹越先, 王辉, 等. 使用热蒸发镀膜法在柔性衬底上制备薄膜的真空镀膜设备[P]. 中国专利, CN111254407A. 2020-06-09.
[25]  Gao, B., et al. (2021) Organic-Inorganic Perovskite Films and Efficient Planar Heterojunction Solar Cells by Magnetron Sputtering. Advanced Science, 8, e2102081.
https://doi.org/10.1002/advs.202102081
[26]  王福贞, 刘欢, 那日松. 离子镀膜技术的进展[J]. 真空, 2014, 51(5): 1-8.
[27]  Li, M., Zeng, L., Chen, Y., et al. (2013) Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings. International Journal of Photoen-ergy, 2013, Article ID: 352473.
https://doi.org/10.1155/2013/352473
[28]  阙立志, 李帅, 朱华新. QK3玻璃基底上可见光区宽带增透膜研究[J]. 江南大学学报(自然科学版), 2014, 13(1): 113-116.
[29]  Bruynooghe, S., Helgert, M., Challier, M., et al. (2015) Wideband Antireflection Coatings Combining Interference Multilayers and Subwavelength Structures Prepared by Reactive Ion Etching. Nanostructured Thin Films VIII SPIE, Vol. 9558, 20-31.
https://doi.org/10.1117/12.2189810
[30]  孙亚军, 朱益清, 李帅, 等. CaF2基底上近红外区宽带增透膜的研究[J]. 激光与红外, 2016, 46(1): 76-80.
[31]  Sharma, N., Kumar, M., Kumari, N., et al. (2018) Design and Deposition of Single and Multilayer Antireflection Coatings of Glass Substrate Using Electron Beam Deposition. Materials Today: Proceedings, 5, 6421-6425.
https://doi.org/10.1016/j.matpr.2017.12.254
[32]  Yenisoy, A., Ye?ilyaprak, C. and Tüzemen, S. (2019) High Efficient Ul-tra-Broadband Anti-Reflection Coating on Silicon for Infrared Applications. Infrared Physics & Technology, 100, 82-86.
https://doi.org/10.1016/j.infrared.2019.05.014
[33]  Ruud, C.J., Cleri, A., Maria, J.P., et al. (2022) Ultralow Index SiO2 Antireflection Coatings Produced via Magnetron Sputtering. Nano Letters, 22, 7358-7362.
https://doi.org/10.1021/acs.nanolett.2c01945
[34]  Addie, A.J., Ismail, R.A. and Mohammed, M.A. (2022) Amorphous Carbon Nitride Dual-Function Anti-Reflection Coating for Crystalline Silicon Solar Cells. Scientific Reports, 12, Article No. 9902.
https://doi.org/10.1038/s41598-022-14078-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133