全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Toxic Effects of Citrus maxima Based Combinatorial Formulations on Important Metabolic Enzymes in Indian White Termite Odontotermes obesus

DOI: 10.4236/aer.2023.112002, PP. 11-33

Keywords: Citrus maxima, Essential Oils, Odontotermes obesus, Enzymes, Inhibition, Termiticidal Action

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, Citrus maxima essential crude oil extract was used to prepare combinatorial formulations and workers of Indian white termite Odontotermes obesus were treated topically with 40% and 80% of 24 hr LD50 values of these formulations. In subsequent bioassays levels of various enzymes i.e. alkaline phosphatase, acid phosphatase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and acetylcholinesterase were evaluated to determine the anti-termite efficacy of Citrus maxima essential oil based combinatorial formulations. S-RET-A, S-RET-B and S-RET-C caused significant (p > 0.05) decrease in glutamate oxaloacetate transaminase i.e. 87.47%, 86.81% and 81.77% & 82.04%, 79.39% and 74.75% respectively at 16 h treatment. In vivo exposure of 40% and 80% of LD50 of combinatorial formulations caused very significant (p > 0.05) reduction in all the test enzymes i.e. alkaline phosphatase, acid phosphatase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase expect acetylcholinesterase levels after 16 h all tested treatments in comparison to control. Both dose-response and time period were found important in physiological alteration in levels of various enzymes. Combinatorial mixtures of Citrus essential oils have shown synergistic activity against termites. The research findings of the present study would help termite control in crop fields, gardens and houses in a sustainable way.

References

[1]  Pandey, L. and Upadhyay, R.K. (2022) Anti-Termite and Therapeutic Uses of Various Plant Essential Oils from Family Rutaceae: A Review. International Journal of Green Pharmacy, 16, 49-58.
[2]  Coimbra, AT., Ferreira, S. and Duarte, A.P. (2020) Genus ruta: A Natural Source of High Value Products with Biological and Pharmacological Properties. Journal of Ethnopharmacology, 260, Article ID: 113076.
https://doi.org/10.1016/j.jep.2020.113076
[3]  Pandey, L. and Upadhyay, R.K. (2021) Anti-Termite Efficacy of Various Plant Essential Oils with Special Reference to Family Rutaceae. World Journal of Pharmaceutical Research, 10, 1003-1049.
[4]  Pandey, L. and Upadhyay, R.K. (2022) Effect of Combinatorial Essential Oil Ingredients of Citrus maxima on Percent Wood Weight Loss and Infestation Caused by Indian White Termite Odontotermes obesus. International Journal of Green Pharmacy, 16, 361-375.
[5]  Bora, H., Kamle, M., Mahato, D.K., Tiwari, P. and Kumar, P. (2020) Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants, 9, Article No. 357.
https://doi.org/10.3390/plants9030357
[6]  Upadhyay, R.K. and Jaiswal, G. (2009) Termite Management: Control Methods and Strategies. Journal of Applied Biosciences, 35, 110-126.
[7]  Visakh, N.U., Pathrose, B., Narayanankutty, A., Alfarhan, A. and Ramesh, V. (2022) Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. Insects, 13, Article No. 480.
https://doi.org/10.3390/insects13050480
[8]  Arnao, M.B. and Hernandez-Ruiz, J. (2018) The Potential of Phytomelatonin as a Nutraceutical. Molecules, 23, Article No. 238.
https://doi.org/10.3390/molecules23010238
[9]  Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M. and Zafar, M.H. (2018) Role of Secondary Metabolites in Plant Defense against Pathogens. Microbial Pathogenesis, 124, 198-202.
https://doi.org/10.1016/j.micpath.2018.08.034
[10]  Pandey, L. and Upadhyay, R.K. (2022) Toxicity and Repellency of Citrus maxima Essential Oil Based Combinatorial Formulations against Odontotermes obesus. World Journal of Pharmaceutical Research, 11, 1909-1923.
[11]  Zakaryan, H., Arabyan, E., Oo, A. and Zandi, K. (2017) Flavonoids: Promising Natural Compounds against Viral Infections. Archives of Virology, 162, 2539-2551.
https://doi.org/10.1007/s00705-017-3417-y
[12]  Yang, L., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F. and Wang, Q. (2018) Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23, Article No. 762.
https://doi.org/10.3390/molecules23040762
[13]  Ohmura, W., Doi, S. and Ohara, M.A. (2000) Antifeedant Activity of Flavonoids and Related Compounds against the subterranean Termite Coptotermes formosanus Shiraki. Journal of Wood Science, 46, 149-153.
https://doi.org/10.1007/BF00777362
[14]  Yuan, Z. and Hu, X.P. (2012) Repellent, Antifeedant, and Toxic Activities of Lantana camara Leaf Extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 105, 2115-2121.
https://doi.org/10.1603/EC12026
[15]  Watanabe, Y., Mihara, R., Mitsunaga, T. and Yoshimura, T. (2005) Termite Repellent Sesquiterpenoids from Callitris glaucophylla Heartwood. Journal of Wood Science, 51, 514-519.
https://doi.org/10.1007/s10086-004-0683-6
[16]  Duke, S.O., Cantrell, C.L., Meepagala, K.M., Wedge, D.E., Tabanca, N. and Schrader, K.K. (2010) Natural Toxins for Use in Pest Management. Toxins, 2, 1943-1962.
https://doi.org/10.3390/toxins2081943
[17]  Farkhondeh, T., Mehrpour, O., Sadeghi, M., Aschner, M., Aramjoo, H., Roshanravan, B. and Samarghandian, S. (2021) A Systematic Review on the Metabolic Effects of Chlorpyrifos. Reviews on Environmental Health, 37, 137-151.
https://doi.org/10.1515/reveh-2020-0150
[18]  Yu, Y., Hua, X., Chen, H., Wang, Y., Li, Z., Han, Y. and Xiang, M. (2020) Toxicity of Lindane Induced by Oxidative Stress and Intestinal Damage in Caenorhabditis elegans. Environmental Pollution, 264, Article ID: 114731.
https://doi.org/10.1016/j.envpol.2020.114731
[19]  Bantz, A., Camon, J., Froger, J.-A., Goven, D. and Raymond, V. (2018) Exposure to Sublethal Doses of Insecticide and Their Effects on Insects at Cellular and Physiological Levels. Current Opinion in Insect Science, 30, 73-78.
https://doi.org/10.1016/j.cois.2018.09.008
[20]  Santos, A.A., De Oliveira, B.M.S., Melo, C.R., Lima, A.P.S., Santana, E.D.R., Blank, A.F., Picanco, M.C., Araujo, A.P.A., Cristaldo, P.F. and Bacci, L. (2012) Sub-Lethal Effects of Essential oil of Lippia sidoides on Drywood Termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicology and Environmental Safety, 145, 436-441.
https://doi.org/10.1016/j.ecoenv.2017.07.057
[21]  Oi, F. (2022) A Review of the Evolution of Termite Control: A Continuum of Alternatives to Termiticides in the United States with Emphasis on Efficacy Testing Requirements for Product Registration. Insects, 13, Article No. 50.
https://doi.org/10.3390/insects13010050
[22]  Calderón-Cortés, N., Escalera-Vázquez, L.H. and Oyama, K. (2018) Occurrence of Termites (Isoptera) on Living and Standing Dead Trees in a Tropical Dry Forest in Mexico. PeerJ, 6, e4731.
https://doi.org/10.7717/peerj.4731
[23]  Van Huis, A. (2017) Cultural Significance of Termites in Sub-Saharan Africa. Journal of Ethnobiology and Ethnomedicine, 13, Article No. 8.
https://doi.org/10.1186/s13002-017-0137-z
[24]  Xie, Q., Xiong, H., Qin, W., Wen, X., Sun, Z. and Wang, C. (2019) Effect of Polyacrylamide/Attapulgite Composite on Foraging Behaviors of Formosan Subterranean Termites (Blattodea: Rhinotermitidae). Journal of Economic Entomology, 112, 290-299.
https://doi.org/10.1093/jee/toy332
[25]  Cheng, S.S., Lin, C.Y., Chung, M.J. and Chang, S.T. (2012) Chemical Composition and Antitermitic Activity against Coptotermes formosanus Shiraki of Cryptomeria japonica Leaf Essential Oil. Chemistry & Biodiversity, 9, 352-358.
https://doi.org/10.1002/cbdv.201100243
[26]  Traoré, S., Tigabu, M., Jouquet, P., Ouédraogo, S.J., Guinko, S. and Lepage, M. (2015) Long-Term Effects of Macrotermes Termites, Herbivores and Annual Early Fire on Woody Undergrowth Community in Sudanian Woodland, Burkina Faso. Flora-Morphology, Distribution, Functional Ecology of Plants, 211, 40-50.
https://doi.org/10.1016/j.flora.2014.12.004
[27]  Evans, T.A., Dawes, T.Z., Ward, P.R. and Lo, N. (2011) Antsand Termites Increase Crop Yield in a Dry Climate. Nature Communications, 2, Article No. 262.
https://doi.org/10.1038/ncomms1257
[28]  Lagendijk, D., Davies, A., Eggleton, P. and Slotow, R. (2016) No Evidence for an Elephant-Termite Feedback Loop in Sand Forest South Africa. Biological Conservation, 203, 125-133.
https://doi.org/10.1016/j.biocon.2016.08.028
[29]  Govorushko, S. (2019) Economic and Ecological Importance of Termites: A Global Review. Entomological Science, 22, 21-35.
https://doi.org/10.1111/ens.12328
[30]  Ravan, S., Khan, I.A., Manzoor, F. and Khan, Z. (2015) Feeding Habitats and Wood Preferences of Termites in Iran. Journal of Entomology and Zoology Studies, 3, 20-23.
[31]  Rust, M.K. and Su, NY. (2012) Managing Social Insects of Urban Importance. Annual Review of Entomology, 57, 355-375.
https://doi.org/10.1146/annurev-ento-120710-100634
[32]  Subekti, N., Yoshimura, T., Rokhman, F. and Mastur, Z. (2015) Potential for Subterranean Termite Attack against Five Bamboo Species in Correlation with Chemical Components. Procedia Environmental Sciences, 28, 783-788.
https://doi.org/10.1016/j.proenv.2015.07.092
[33]  Paul, B., Khan, M.A., Paul, S., Shankarganesh, K. and Chakravorty, S. (2018) Termites and Indian Agriculture. In: Khan, M. and Ahmad, W., Eds., Termites and Sustainable Management, Sustainability in Plant and Crop Protection, Springer, Cham, 52-86.
https://doi.org/10.1007/978-3-319-68726-1_3
[34]  Rathour, K.S., Sudershan, G., Das, T., Pargat, S., Anjani, K. and Somvanshi, V.S. (2014) Biological Management of Subter-Ranean Termites (Odontotermes obesus) Infesting Wheat and Pearl Millet Crops by Entomopathogenic Nematodes. Indian Journal of Nematology, 44, 97-100.
[35]  Qasim, M., Lin, Y., Fang, D. and Wang, L. (2015) Termites and Microbial Biological Control Strategies. South Asia Journal of Multidisciplinary Studies, 1, 33-62.
[36]  Bergmeyer, U.H. (1967) Determination of Alkaline Phophatase and Acid Phosphatase Was Determined by Using p-Nitrophenyl Phosphate. In: Bergmeyer, H.U., Ed., Method of Enzymatic Analysis, Academic Press, New York, 1129.
[37]  Reitman, A. and Frankel, S. (1957) A Colorimetric Method for the Determination of Glutamate-Oxaloacetate and Serum Glutamate-Pyruvate Transaminase. American Journal of Clinical Pathology, 28, 56-63.
https://doi.org/10.1093/ajcp/28.1.56
[38]  Ellman, G.L., Courtney, K.D., Andres Jr., V. and Featherstone, R.M. (1961) A New and Rapid Colorimeteric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7, 88-95.
https://doi.org/10.1016/0006-2952(61)90145-9
[39]  Sokal, R.R. and Rohlf, F.J. (1973) Introduction to Biostatistics. W. H. Freeman & Co Ltd., San Francisco.
[40]  Abou-Donia, M.B. (1978) Increase in Acid Phosphatase Activity in Hens Following an Oral Dose of Leptophos. Toxicology Letters, 2, 199-203.
https://doi.org/10.1016/0378-4274(78)90067-X
[41]  Pillo, B., Ansani, M.V. and Shah, R.V. (1972) Studies on Wound Healing and Repair in Pigeon Liver II: Histochemical Studies on Acid and Alkaline Phosphatase during the Process. Journal of Animal Morphology and Physiology, 19, 205-221.
[42]  Bouck, G.R. (1966) Changes in Blood and Muscle Composition of Rock Bass (Ambloplites rupestris) as Physiological Criteria of Stressful Conditions. Michigan State University, East Lansing.
[43]  Abraham, R., Goldberg, L. and Grasso, P. (1967) Hepatic Response to Lysosomal Effects of Hypoxia, Neutral Red and Chloroquine. Nature, 215, 195-196.
https://doi.org/10.1038/215194a0
[44]  Xia, Y., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M. and Charnley, A.K. (2000) Acid Phosphatases in the Haemolymph of the Desert Locust, Schistocerca gregaria, Infected with the Entomopathogenic Fungus Metarhizium anisopliae. Journal of Insect Physiology, 46, 1249-1257.
https://doi.org/10.1016/S0022-1910(00)00045-7
[45]  Bilal, M., Freed, S., Ashraf, M.Z., Zaka, S.M. and Khan, M.B. (2018) Activity of Acetylcholinesterase and Acid and Alkaline Phosphatases in Different Insecticide-Treated Helicoverpa armigera (Hubner). Environmental Science and Pollution Research, 25, 22903-22910.
https://doi.org/10.1007/s11356-018-2394-3
[46]  Csikos, G. and Sass, M. (1997) Changes of Acid Phosphatase Content and Activity in the Fat Body and the Hemolymph of the Flesh Fly Neobellieria (Sarcophaga) bullata during Metamorphosis. Archives of Insect Biochemistry and Physiology, 34, 369-390.
https://doi.org/10.1002/(SICI)1520-6327(1997)34:3<369::AID-ARCH10>3.0.CO;2-8
[47]  Sahota, T.S. (1975) Effect of Juvenile Hormone on Acid Phosphatases in the Degenerating Flight Muscles of the Douglas-Fir Beetle, Dendroctonus pseudotsugae. Journal of Insect Physiology, 21, 471-478.
https://doi.org/10.1016/0022-1910(75)90152-3
[48]  Hamadah, K.S. (2019) Disturbance of Phosphatase and Transaminase Activities in Grubs of the Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) by Certain Insecticidal Compounds. The Journal of Basic and Applied Zoology, 80, Article No. 52.
https://doi.org/10.1186/s41936-019-0123-1
[49]  Vaillant, A. (2021) Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses, 13, Article No. 745.
https://doi.org/10.3390/v13050745
[50]  Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E. and Kim, H.-S. (2006) Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques. Sensors, 6, 756-782.
https://doi.org/10.3390/s6070756
[51]  Mordue, W. and Goldworthy, G.J. (1973) Transaminase Levels and Uric Acid Production in Adult Locusts. Insect Biochemistry, 3, 419-427.
https://doi.org/10.1016/0020-1790(73)90075-9
[52]  Mir, S., Bouchenak, O., Ait Kaci, K., Rouane, A., Alliliche, M. and Arab, K. (2022) Chemical Composition and Insecticidal Activity of Origanum floribundum Munby Essential Oil Endemic Plant from Algeria. Tropical Biomedicine, 39, 215-220.
https://doi.org/10.47665/tb.39.2.005
[53]  Brochot, A., Guilbot, A., Haddioui, L. and Roques, C. (2017) Antibacterial, Antifungal, and Antiviral Effects of Three Essential Oil Blends. Microbiology Open, 6, e00459.
https://doi.org/10.1002/mbo3.459
[54]  Khan, H., Khan, M.A. and Hussan, I. (2007) Enzyme Inhibition Activities of the Extracts from Rhizomes of Gloriosa superba Linn (Colchicaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 722-725.
https://doi.org/10.1080/14756360601164853
[55]  Khan, T., Ahmad, M., Nisar, M., Ahmad, M., Lodhi, M.A. and Choudhary, M.I. (2005) Enzyme Inhibition and Radical Scavenging Activities of Aerial Parts of Paeonia emodi Wall. (Paeoniaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 245-249.
https://doi.org/10.1080/14756360400026220
[56]  Kim, D.K. (2002) Inhibitory Effect of Corynoline Isolated from the Aerial Parts of Corydalis incise on the Acetylcholinesterase. Archives of Pharmacal Research, 25, 817-819.
https://doi.org/10.1007/BF02976997
[57]  Shekari, M., Sendi, J.J., Etebari, K., Zibaee, A. and Shadparvar, A. (2008) Effects of Artemisia annua L. (Asteracea) on Nutritional Physiology and Enzyme Activities of Elm Leaf Bettle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae). Pesticide Biochemistry and Physiology, 91, 66-74.
https://doi.org/10.1016/j.pestbp.2008.01.003
[58]  Ahmad, B., Mukarram Shah, S.M., Khan, H. and Hassan Shah, S.M. (2007) Enzyme Inhibition Activities of Teucrium royleanum. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 730-732.
https://doi.org/10.1080/14756360701306271
[59]  Ahmad, B., Shah, S.M., Bashir, S. and Shah, J. (2007) Enzyme Inhibition Activities of Andrachne cardifolia Muell. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 235-238.
https://doi.org/10.1080/14756360601051258
[60]  Sigurdsson, S. and Gudbjarnason, S. (2007) Inhibition of Acetylcholinesterase by Extracts and Constituents from Angelica archangelica and Geranium sylvaticum. Zeitschrift für Naturforschung C, 62, 689-693.
https://doi.org/10.1515/znc-2007-9-1011
[61]  Elgorashi, E.F., Stafford, G.I. and Van Staden, J. (2004) Acetylcholinesterase Enzyme Inhibitory Effects of Amaryllidaceae Alkaloids. Planta Medica, 70, 260-262.
https://doi.org/10.1055/s-2004-818919
[62]  Mukherjee, P.K., Kumar, V., Mal, M. and Houghton, P.J. (2007) Acetylcholinesterase Inhibitors from Plants. Phytomedicine, 14, 289-300.
https://doi.org/10.1016/j.phymed.2007.02.002
[63]  Kartal, S.N., Imamura, Y., Tsuchiya, F. and Ohsato, K. (2004) Preliminary Evaluation of Fungicidal and Termiticidal Activities of Filtrates from Biomass Slurry Fuel production. Bioresource Technology, 95, 41-47.
https://doi.org/10.1016/j.biortech.2004.02.005
[64]  Quistad, G.B., Zhang, N., Sparks, S.E. and Casida, J. E. (2000) Phosphoacetylcholinesterase: Toxicity of Phosphorous Oxychloride to Mammals and Insects That Can Be Attributed to Selective Phosphorylation of Acetylcholinesterase by Phosphorodichloridic Acid. Chemical Research in Toxicology, 13, 652-657.
https://doi.org/10.1021/tx000028o
[65]  Blasiak, J., Jaloszynski, P., Trzeciak, A. and Szyfter, K. (1999) In Vitro Studies on the Genotoxicity of the Organophosphorus Insecticides Malathion and Its Two Analogues. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 445, 275-283.
https://doi.org/10.1016/S1383-5718(99)00132-1
[66]  Jaffrezic-Renault, N. (2001) New Trends in Biosensors for Organophosphorus Pesticides. Sensors, 1, 60-74.
https://doi.org/10.3390/s10100060
[67]  Lusková, V., Svoboda, M. and Kolárová, J. (2002) The Effect of Diazinon on Blood Plasma Biochemistry in Carp (Cyprinus carpio L.). Acta Veterinaria Brno, 71, 117-123.
https://doi.org/10.2754/avb200271010117
[68]  Pant, R. and Morris, I.D. (1972) Variation in Glycogen, Total Free Sugars, Protein, Alkaline and Acid Phosphatases, Citrate and Inorganic Phosphorus Level in Fat Body of Philosamia ricini (Eri-silkworm) during Development. The Journal of Biochemistry, 71, 1-8.
https://doi.org/10.1093/oxfordjournals.jbchem.a129730
[69]  Calic, M., Vrdoljak, A.L., Radic, B., Jelic, D., Jun, D., Kuca, K. and Kovarik, Z. (2006) In Vitro and in Vivo Evaluation of Pyridinium Oximes: Mode of Interaction with Acetylcholinesterase, Effect on Tabun- and Soman-Poisoned Mice and Their Cytotoxicity. Toxicology, 219, 85-96.
https://doi.org/10.1016/j.tox.2005.11.003
[70]  Lessenger, J.E. and Reese, B.E. (1999) Rational Use of Cholinesterase Activity Testing in Pesticide Poisoning. The Journal of the American Board of Family Practice, 12, 307-314.
https://doi.org/10.3122/jabfm.12.4.307
[71]  Moriarty, F. (1988) Ecotoxicology. Human & Experimental Toxicology, 7, 437-441.
https://doi.org/10.1177/096032718800700510
[72]  Pandey, L. and Upadhyay, R.K. (2023) Biochemical Alterations and Termiticidal Activity of Combinatorial Essential Oil Ingredients of Citrus maxima on Indian White Termite Odontotermes obesus. Journal of Biosciences and Medicines, 11, 60-81.
https://doi.org/10.4236/jbm.2023.114006

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413