全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Toxicity of Tagetes erecta Essential Oil Based Combinatorial Formulations on Various Metabolic Enzymes in Indian White Termite Odontotermes obesus

DOI: 10.4236/aer.2023.112004, PP. 58-81

Keywords: Tagetes erecta, Essential Oils, Odontotermes obesus, Enzymes, Inhibition, Termiticidal Action

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plant essential oils and their constituents have proven to be very effective against insects, especially termites. They are the best alternative to synthetic pesticides that are harmless to the environment and human health. In the present study, different enzymes, namely alkaline phosphatase, acid phosphatase, glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and acetylcholinesterase, were evaluated in Indian termite Odontotermes obesus in a combination preparation based on Tagetes erecta essential oil. For the study of anti-termite effects against worker termites were treated topically with 40% and 80% of the 24-hour LD50 values of various combination formulations. Subsequent bioassays at 40% and 80% of LD50 of combinatorial preparations S-AST-A, S-AST-B, and S-AST-C resulted in a significant (p > 0.05) decrease in glutamate-oxaloacetate transaminase. After 16 hours of treatment, they were 87.92%, 80.17%, 89.30%, 79.17%, 81.92% and 73.17% respectively. In vivo exposures of 40% and 80% of the LD50 of the combination formulation caused a highly significant (p > 0.05) reduction (p > 0.05) of all test enzymes tested compared to controls. The effects of different oil formulations exhibited time- and dose-dependent responses, resulting in physiological changes in the concentrations of various enzymes. The combined mixture of Tagetes erecta essential oils has significantly better anti-termite ability compared to inorganic insecticides. Findings from this study will help support termite control in fields, gardens and homes in a sustainable way, without the downsides of insecticide resistance and pollution. These could potentially be used to produce commercial formulations for use against pests.

References

[1]  Rolnik, A. and Olas, B. (2021) The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International Journal of Molecular Sciences, 22, Article No. 3009.
https://doi.org/10.3390/ijms22063009
[2]  Lopes, D.C.D., de Oliveira, T.B., Vicosa, A.L., Valverde, S.S. and Ricci Júnior, E. (2021) Anti-Inflammatory Activity of the Compositae Family and Its Therapeutic Potential. Planta Medica, 87, 71-100.
https://doi.org/10.1055/a-1178-5158
[3]  Castillo, V.P., Sajap, A.S. and Sahri, M.H. (2013) Feeding Response of Subterranean Termites Coptotermes curvignathus and Coptotermes gestroi (Blattodea: Rhinotermitidae) to Baits Supplemented with Sugars, Amino Acids, and Cassava. Journal of Economic Entomology, 106, 1794-1801.
https://doi.org/10.1603/EC12301
[4]  Kakkar, G., Osbrink, W. and Su, N.Y. (2018) Molting Site Fidelity Accounts for Colony Elimination of the Formosan Subterranean Termites (Isoptera: Rhinotermitidae) by Chitin Synthesis Inhibitor Baits. Scientific Reports, 8, Article No. 1259.
https://doi.org/10.1038/s41598-018-19603-8
[5]  Syahmina, A. and Usuki, T. (2020) Ionic Liquid-Assisted Extraction of Essential Oils from Thujopsis dolobrata (Hiba). ACS Omega, 5, 29618-29622.
https://doi.org/10.1021/acsomega.0c04860
[6]  Kumar, S. and Upadhyay, R. (2022) Toxic & Repellent Activity of Tagetes erecta Essential Oil Based Combinatorial Formulations on Indian White Termite Odontotermes obesus. World Journal of Pharmaceutical Research, 11, 784-797.
[7]  Visakh, N.U., Pathrose, B., Narayanankutty, A., Alfarhan, A. and Ramesh, V. (2022) Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. Insects, 13, Article No. 480.
https://doi.org/10.3390/insects13050480
[8]  Arnao, M.B. and Hernandez-Ruiz, J. (2018) The Potential of Phytomelatonin as a Nutraceutical. Molecules, 23, Article No. 238.
https://doi.org/10.3390/molecules23010238
[9]  Zakaryan, H., Arabyan, E., OO, A. and Zandi, K. (2017) Flavonoids: Promising Natural Compounds against Viral Infections. Archives of Virology, 162, 2539-2551.
https://doi.org/10.1007/s00705-017-3417-y
[10]  Yuan, Z. and Hu, X.P. (2012) Repellent, Antifeedant, and Toxic Activities of Lantana camara Leaf Extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 105, 2115-2121.
https://doi.org/10.1603/EC12026
[11]  Ohmura, W., Doi, S. and Ohara, M.A. (2000) Antifeedant Activity of Flavonoids and Related Compounds against the Subterranean Termite Coptotermes formosanus Shiraki. Journal of Wood Science, 46, 149-153.
https://doi.org/10.1007/BF00777362
[12]  Romagnoli, C., Bruni, R. andreotti, E., Rai, M.K., Vicentini, C.B. and Mares, D. (2005) Chemical Characterization and Antifungal Activity of Essential Oil of Capitula from Wild Indian Tagetes patula L. Protoplasma, 225, 57-65.
https://doi.org/10.1007/s00709-005-0084-8
[13]  Elsohly, M.A., Radwan, M.M., Gul, W., Chandra, S. and Galal, A. (2017) Phytochemistry of Cannabis sativa L. In: Kinghorn, A.D., Falk, H., Gibbons, S. and Kobayashi, J., Eds., Phytocannabinoids, Springer, Berlin, 1-36.
https://doi.org/10.1007/978-3-319-45541-9_1
[14]  Santos, A.A., De Oliveira, B.M.S., Melo, C.R., Lima, A.P.S., Santana, E.D.R., Blank, A.F., Picanco, M.C., Araújo, A.P.A., Cristaldo, P.F. and Bacci, L. (2012) Sub-Lethal Effects of Essential Oil of Lippia sidoides on Drywood Termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicology and Environmental Safety, 145, 436-441.
https://doi.org/10.1016/j.ecoenv.2017.07.057
[15]  Van Huis, A. (2017) Cultural Significance of Termites in Sub-Saharan Africa. Journal of Ethnobiology and Ethnomedicine, 13, Article No. 8.
https://doi.org/10.1186/s13002-017-0137-z
[16]  Calderón-cortés, N., Luis, H. and Ken oyama, E. (2018) Occurrence of Termites (Isoptera) on Living and Standing Dead Trees in a Tropical Dry Forest in Mexico. PeerJ, 6, e4731.
https://doi.org/10.7717/peerj.4731
[17]  Xie, Q., Xiong, H., Qin, W., Wen, X., Sun, Z. and Wang, C. (2019) Effect of Polyacrylamide/Attapulgite Composite on Foraging Behaviors of Formosan Subterranean Termites (Blattodea: Rhinotermitidae). Journal of Economic Entomology, 112, 290-299.
https://doi.org/10.1093/jee/toy332
[18]  Cheng, S.S., Lin, C.Y., Chung, M.J. and Chang, S.T. (2012) Chemical Composition and Antitermitic Activity against Coptotermes formosanus Shiraki of Cryptomeria japonica Leaf Essential Oil. Chemistry & Biodiversity, 9, 352-358.
https://doi.org/10.1002/cbdv.201100243
[19]  Traore, S., Tigabu, M., Jouquet, P., Ou Edraogo, S.J., Guinko, S. and Lepage, M. (2015) Long-Term Effects of Macrotermes Termites, Herbivores and Annual Early Fire on Woody Undergrowth Community in Sudanian Woodland, Burkina Faso. Flora: Morphology, Distribution, Functional Ecology of Plants, 211, 40-50.
https://doi.org/10.1016/j.flora.2014.12.004
[20]  Evans, T.A., Dawes, T.Z. and Ward, P.R. (2011) Ants and Termites Increase Crop Yield in a Dry Climate. Nature Communications, 2, Article No. 262.
https://doi.org/10.1038/ncomms1257
[21]  Ravan, S., Khan, I.A., Manzoor, F. and Khan, Z. (2015) Feeding Habitats and Wood Preferences of Termites in Iran. Journal of Entomology and Zoology Studies, 3, 20-23.
[22]  Rust, M.K. and Su, N.Y. (2012) Managing Social Insects of Urban Importance. Annual Review of Entomology, 57, 355-375.
https://doi.org/10.1146/annurev-ento-120710-100634
[23]  Paul, B., Khan, M.A., Paul, S., Shankarganesh, K. and Chakravorty, S. (2018) Termites and Indian Agriculture. In: Khan, M.A. and Ahmad, W., Eds., Termites and Sustainable Management, Springer, Berlin, 51-96.
https://doi.org/10.1007/978-3-319-68726-1_3
[24]  Rathour, K.S., Sudershan, G., Das, T., Pargat, S., Anjani, K. and Somvanshi, V.S. (2014) Biological Management of Subterranean Termites (Odontotermes obesus) Infesting Wheat and Pearl Millet Crops by Entomopathogenic Nematodes. Indian Journal of Nematology, 44, 97-100.
[25]  Auer, L., Lazuka, A., Sillam-Dussès, D., Miambi, E., O’Donohue, M. and Hernandez-Raquet, G. (2017) Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Frontiers in Microbiology, 8, Article No. 2623.
https://doi.org/10.3389/fmicb.2017.02623
[26]  Poinar, G., Meikle, W. and Mercadier, G. (2006) Chroniodiplogaster formosiana sp. n. (Rhabditida: Diplogastridae) from Chinese Populations of Odontotermes formosanus Shiraki (Isoptera: Termitidae). Journal of Nematology, 38, 181-186.
[27]  Bergmeyer, U.H. (1967) Determination of Alkaline Phosphatase and Acid Phosphatase Was Determined by Using p-Nitrophenyl Phosphate, Method of Enzymatic Analysis. New York Academic Press, New York, 1129.
[28]  Reitman, A. and Frankel, S. (1957) A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. American Journal of Clinical Pathology, 28, 56-63.
https://doi.org/10.1093/ajcp/28.1.56
[29]  Ellman, G.L., Courtney, K.D., Andres, V. and Featherstone, R.M. (1961) A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7, 88-90, IN1, 91-95.
https://doi.org/10.1016/0006-2952(61)90145-9
[30]  Sokal, R.R. and Rohlf, F.J. (1973) Introduction to Biostatistics. W.H. Freeman & Co. Ltd., San Francisco.
[31]  Abou-Donia, M.B. (1978) Increase in Acid Phosphatase Activity in Hens Following an Oral Dose of Leptophos. Toxicology Letters, 2, 199-203.
https://doi.org/10.1016/0378-4274(78)90067-X
[32]  Pillo, B., Ansani, M.V. and Shah, R.V. (1972) Studies on Wound Healing and Repair in Pigeon Liver II: Histochemical Studies on Acid and Alkaline Phosphatase during the Process. The Journal of Animal Morphology and Physiology, 19, 205-221.
[33]  Bouck, G.R. (1966) Changes in Blood and Muscle Composition of Rock Bass (Ambloplites rupestris) as Physiological Criteria of Stressful Conditions. Ph.D. Dissertation, Michigan State University, East Lansing.
[34]  Abraham, R., Goldberg, L. and Grasso, P. (1967) Hepatic Response to Lysosomal Effects of Hypoxia, Neutral Red and Chloroquine. Nature, 215, 195-196.
https://doi.org/10.1038/215194a0
[35]  Vaillant, A. (2021) Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses, 13, Article No. 745.
https://doi.org/10.3390/v13050745
[36]  Huang, X.J., Choi, Y.K., Im, H.S., Yarimaga, O., Yoon, E. and Kim, H.S. (2006) Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques. Sensors (Basel), 6, 756-782.
https://doi.org/10.3390/s6070756
[37]  Mordue, W. and Goldworthy, G.J. (1973) Transaminase Levels and Uric Acid Production in Adult Locusts. Insect Biochemistry and Molecular Biology, 3, 419-427.
https://doi.org/10.1016/0020-1790(73)90075-9
[38]  Csikós, G. and Sass, M. (1997) Changes of Acid Phosphatase Content and Activity in the Fat Body and the Hemolymph of the Flesh Fly Neobellieria (Sarcophaga) bullata during Metamorphosis. Archives of Insect Biochemistry and Physiology, 34, 369-390.
[39]  Sharma, U., Pal, D. and Prasad, R. (2014) Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry, 29, 269-278.
https://doi.org/10.1007/s12291-013-0408-y
[40]  Buchet, R., Millan, J.L. and Magne, D. (2013) Multisystemic Functions of Alkaline Phosphatases. In: Millan, J., Ed., Phosphatase Modulators, Humana Press, Totowa, 27-51.
https://doi.org/10.1007/978-1-62703-562-0_3
[41]  Brichacek, A.L. and Brown, C.M. (2019) Alkaline Phosphatase: A Potential Biomarker for Stroke and Implications for Treatment. Metabolic Brain Disease, 34, 3-19. https://doi.org/10.1007/s11011-018-0322-3
[42]  Pannala, V.R., Wall, M.L., Estes, S.K., Trenary, I., O’Brien, T.P., Printz, R.L., Vinnakota, K.C., Reifman, J., Shiota, M., Young, J.D. and Wallqvist, A. (2018) Metabolic Network-Based Predictions of Toxicant-Induced Metabolite Changes in the Laboratory Rat. Scientific Reports, 8, Article No. 11678.
https://doi.org/10.1038/s41598-018-30149-7
[43]  Xia, Y., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M. and Charnley, A.K. (2000) Acid Phosphatases in the Haemolymph of the Desert Locust, Schistocerca gregaria, Infected with the Entomopathogenic Fungus Metarhizium anisopliae. Journal of Insect Physiology, 46, 1249-1257.
https://doi.org/10.1016/S0022-1910(00)00045-7
[44]  Bilal, M., Freed, S., Ashraf, M.Z., Zaka, S.M. and Khan, M.B. (2018) Activity of Acetylcholinesterase and Acid and Alkaline Phosphatases in Different Insecticide-Treated Helicoverpa armigera (Hübner). Environmental Science and Pollution Research (International), 25, 22903-22910.
https://doi.org/10.1007/s11356-018-2394-3
[45]  Sahota, T.S. (1975) Effect of Juvenile Hormone on Acid Phosphatases in the Degenerating Flight Muscles of the Douglas-Fir Beetle, Dendroctonus pseudotsugae. Journal of Insect Physiology, 21, 471-478.
https://doi.org/10.1016/0022-1910(75)90152-3
[46]  Ishaaya, I. and Casida, J.E. (1980) Properties and Toxicological Significance of Esterases Hydrolyzing Permethrin and Cypermethrin in Trichoplusia ni Larval Gut and Integument: Pesticide Biochemistry and Physiology, 14, 178-184.
https://doi.org/10.1016/0048-3575(80)90109-1
[47]  Chaidee, A., Wongchai, C. and Pfeiffer, W. (2008) Extracellular Alkaline Phosphatase Is a Sensitive Marker for Cellular Stimulation and Exocytosis in Heterotroph Cell Cultures of Chenopodium ruburm. Journal of Plant Physiology, 165, 1655-1666.
https://doi.org/10.1016/j.jplph.2007.12.012
[48]  Jurat-Fuentes, J.L., Karumbaiah, L., Jakka, S.R.K., Ning, C., Liu, C. and Wu, K. (2011) Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis. PLOS ONE, 6, e17606.
https://doi.org/10.1371/journal.pone.0017606
[49]  Yi, S.X. and Adams, T.S. (2001) Age- and Diapause-Related Acid and Alkaline Phosphatase Activities in the Intestine and Malpighian Tubules of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). Archives of Insect Biochemistry and Physiology, 46, 152-163.
https://doi.org/10.1002/arch.1025
[50]  Houk, E.J. and Hardy, J.L. (1984) Alkaline Phosphatases of the Mosquitos, Culex tarsalis Coquillett. Comparative Biochemistry and Physiology Part B, 78, 303-310.
https://doi.org/10.1016/0305-0491(84)90034-8
[51]  Sonawane, S.M. (2017) Effect of Heavy Metals on Lysosomal Enzyme Alkaline Phosphatase Activity of Bivalve L. marginalis. IOSR Journal of Pharmacy, 7, 53-58.
[52]  Borzecki, A., Nieradko-Iwanicka, B. and Mikocka, J. (2020) The Influence of Poisoning with Patulin on Activity of Acid Phosphatase, Cathepsin B and D in Mice Kidneys and Livers. Journal of Pre-Clinical and Clinical Research, 14, 94-97.
https://doi.org/10.26444/jpccr/126833
[53]  Mazumdar, I. and Goswami, K. (2014) Chronic Exposure to Lead: A Cause of Oxidative Stress and Altered Liver Function in Plastic Industry Workers in Kolkata, India. Indian Journal of Clinical Biochemistry, 29, 89-92.
https://doi.org/10.1007/s12291-013-0337-9
[54]  Lala, V., Zubair, M. and Minter, D.A. (2022) Liver Function Tests. StatPearls Publishing, Tampa.
[55]  Khan, H., Khan, M.A. and Hussan, I. (2007) Enzyme Inhibition Activities of the Extracts from Rhizomes of Gloriosa superba Linn. (Colchicaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 722-725.
https://doi.org/10.1080/14756360601164853
[56]  Khan, T., Ahmad, M., Nisar, M., Ahmad, M., Lodhi, M.A. and Choudhary, M.I. (2005) Enzyme Inhibition and Radical Scavenging Activities of Aerial Parts of Paeonia emodi Wall (Paeoniaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 245-249.
https://doi.org/10.1080/14756360400026220
[57]  Kim, D.K. (2002) Inhibitory Effect of Corynoline Isolated from the Aerial Parts of Corydalis incisa on the Acetylcholinesterase. Archives of Pharmacal Research, 25, 817-819. https://doi.org/10.1007/BF02976997
[58]  Shekari, M., Sendi, J.J., Etebari, K., Zibaee, A. and Shadparvar, A. (2008) Effects of Artemisia annua (Asteracea) on Nutritional Physiology and Enzyme Activities of Elm Leaf Beetle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae). Pesticide Biochemistry and Physiology, 91, 66-74.
https://doi.org/10.1016/j.pestbp.2008.01.003
[59]  Ahmad, B., Mukarram, S.M., Khan, H., Hassan, M. and Shan, J. (2007) Enzyme Inhibition Activities of Teucrium royleanum. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 730-732.
https://doi.org/10.1080/14756360701306271
[60]  Ahmad, B., Shan, S.M., Bashir, S. and Shan, J. (2007) Enzyme Inhibition Activities of Andrachne cordifolia Mulle. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 235-238.
https://doi.org/10.1080/14756360601051258
[61]  Elgorashi, E.F., Stafford, G.I. and Van Staden, J. (2004) Acetylcholinesterase Enzyme Inhibitory Effects of Amaryllidaceae Alkaloids. Planta Medica, 70, 260-262.
https://doi.org/10.1055/s-2004-818919
[62]  Mukherjee, P.K., Kumar, V., Mal, M. and Houghton, P.J. (2007) Acetylcholinesterase Inhibitors from Plants. Phytomedicine, 14, 289-300.
https://doi.org/10.1016/j.phymed.2007.02.002
[63]  Verma, S., Sharma, S. and Malik, A. (2016) Termiticidal and Repellency Efficacy of Botanicals against Odontotermes obesus. International Journal of Research in Biosciences, 5, 52-59.
[64]  Kartal, S.N., Imamura, Y., Tsuchiya, F. and Ohsato, K. (2004) Preliminary Evaluation of Fungicidal and Termiticidal Activities of Filtrates from Biomass Slurry Fuel Production. Bioresource Technology, 95, 41-47.
https://doi.org/10.1016/j.biortech.2004.02.005
[65]  Quistad, G.B., Zhang, N., Sparks, S.E. and Casida, J.E. (2000) Phosphoacetylcholinesterase: Toxicity of Phosphorus Oxychloride to Mammals and Insects That Can Be Attributed to Selective Phosphorylation of Acetylcholinesterase by Phosphorodichloridic Acid. Chemical Research in Toxicology, 13, 652-657.
https://doi.org/10.1021/tx000028o
[66]  Blasiak, J., Jaloszynski, P., Trzeciak, A. and Szyfter, K. (1999) In Vitro Studies on the Genotoxicity of the Organophosphorus Insecticides Malathion and Its Two Analogues. Mutation Research, 445, 275-283.
https://doi.org/10.1016/S1383-5718(99)00132-1
[67]  Calic, M., Vrdoljak, A.L., Radic, B., Jelic, D., Jun, D., Kuca, K. and Kovarik, Z. (2006) In Vitro and in Vivo Evaluation of Pyridinium Oximes: Mode of Interaction with Acetylcholinesterase, Effect on Tabun- and Soman-Poisoned Mice and Their Cytotoxicity. Toxicology, 219, 85-96.
https://doi.org/10.1016/j.tox.2005.11.003
[68]  Lessenger, J.E. and Reese, B.E. (1999) Rational Use of Cholinesterase Activity Testing in Pesticide Poisoning. The Journal of the American Board of Family Practice, 12, 307-314.
https://doi.org/10.3122/jabfm.12.4.307
[69]  Jaffrezic-Renault, N. (2001) New Trends in Biosensors for Organophosphorus Pesticides. Sensors, 1, 60-74.
https://doi.org/10.3390/s10100060
[70]  Luskova, V., Svoboda, M. and Kolaova, J. (2002) The Effect of Diazinon on Blood Plasma Biochemistry in Carp (Cyprinus carpio L.). Acta Veterinaria Brno, 71, 117-123. https://doi.org/10.2754/avb200271010117
[71]  Moriarty, F. (1988) Ecotoxicology. Human Toxicology, 7, 437-441.
https://doi.org/10.1177/096032718800700510
[72]  Pant, R. and Morris, I.D. (1972) Variation in Glycogen, Total Free Sugars, Protein, Alkaline and Acid Phosphatases, Citrate and Inorganic Phosphorus Level in Fat Body of Philosamia ricini (Eri-Silkworm) during Development. The Journal of Biochemistry, 71, 1-8.
https://doi.org/10.1093/oxfordjournals.jbchem.a129730

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133