全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Trends in Bacterial Blood Culture Isolates and Resistance in Children in Two Microbiologic Eras from a Tertiary Health Facility in North East Nigeria

DOI: 10.4236/ojmm.2023.132014, PP. 159-182

Keywords: Trend, Blood Culture Isolates, Children, Manual, Bactec, Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Antimicrobial Resistance surveillance is predicated on blood culture as a priority clinical specimen in especially resource limited settings. Establishing trends in blood stream infections and resistance patterns can inform institutional and national policy on antimicrobial stewardship, surveillance, infection prevention and control. Methodology: Blood Culture isolates in children (0 - 18 years) by conventional method from 2008-2012 and Bactec Automated culture system from 2015-2020 were retrieved. Information analyzed included age, sex, month, and year and culture growth/identity of microorganisms and their sensitivity/resistance patterns. Clinical and Laboratory Standards Institute (CLSI) guideline for antibiotic susceptibility testing was used. Results: 20,540 children were admitted: 8964 (44.6%) and 11,630 (55.4%) in the Manual and Bactec blood culture era respectively. Blood cultures were done in 5271 in the manual culture era and 1077 in the Bactec culture era; of these cultures, 514 (9.7%) and 461 (42.8%) were positive for isolates in the respective era (p =

References

[1]  Cohen, J., Vincent, J.L., Adhikari, N.K.J., et al. (2015) Sepsis: A Roadmap for Future Research. The Lancet Infectious Diseases, 15, 581-614.
https://doi.org/10.1016/S1473-3099(15)70112-X
[2]  Tjandra, K.C., Ram-Mohan, N., Abe, R., Hashemi, M.M., Lee, J.H. and Chin, S.M. (2022) Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics, 11, Article 511.
https://doi.org/10.3390/antibiotics11040511
[3]  Diekema, D.J., Hsueh, P.R., Mendes, R.E., Pfaller, M.A., Rolston, K.V., Sader, H.S., et al. (2019) The Microbiology of Bloodstream Infection: 20-Year Trends from the Sentry Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 63, e00355-19.
https://doi.org/10.1128/AAC.00355-19
[4]  Antimicrobial Resistance Collaborators (2022) Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet, 399, 629-655.
https://doi.org/10.1016/S0140-6736(21)02724-0
[5]  Federal Ministries of Agriculture and Rural Development, Environment and Health, Abuja Nigeria (2017) Antimicrobial Use and Resistance in Nigeria: Situation Analysis and Recommendations. FMAEH.
[6]  Federal Ministries of Agriculture and Rural Development, Environment and Health, Abuja Nigeria (2017) National Action Plan for Antimicrobial Resistance 2017-2022. FMAEH.
[7]  Ombelet, S., Barbé, B., Afolabi, D., et al. (2019) Best Practices of Blood Cultures in Low- and Middle-Income Countries. Frontiers in Medicine, 6, Article No. 131.
https://doi.org/10.3389/fmed.2019.00131
[8]  Lamy, B., Dargière, S., Arendrup, M.C., Parienti, J.J. and Tattevin, P. (2016) How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State of the Art. Frontiers in Microbiology, 7, Article No. 697.
https://doi.org/10.3389/fmicb.2016.00697
[9]  Grand View Research (2018) Blood Culture Tests: Market Analysis & Segment Forecast from 2014-2025. Grand View Research, San Francisco.
[10]  Isaac, E.W., Jalo, I., Manga, M.M., Difa, A.J., Poksireni, M.R., Christianah, O., Mohammed, I. and Charanci, M.S. (2022) Transitioning to Automated Microbiologic Era: Blood Culture Isolates in Children and Adults in Federal Teaching Hospital in Gombe, North East Nigeria 2016-2020. Open Journal of Medical Microbiology, 12, 184-203.
https://doi.org/10.4236/ojmm.2022.124016
[11]  Isaac, E.W., Jalo, I., Difa, A.J., Poksireni, M.R., Christianah, O., Charanci, M.S., Mohammed, I. and Manga, M.M. (2022) Bacterial Blood Isolates in Children: Conventional vs. Bactec Automated Blood Culture System in a Tertiary Health Centre in Gombe, North East Nigeria. Open Journal of Medical Microbiology, 12, 101-116.
https://doi.org/10.4236/ojmm.2022.123010
[12]  Elantamilan, D., Lyngdoh, V.W., Khyriem, A., Rajbongshi, J., Bora, I., Devi, S.T., et al. (2016) Comparative Evaluation of the Role of Single and Multiple Blood Specimens in the Outcome of Blood Cultures Using BacT/ALERT 3D (automated) Blood Culture System in a Tertiary Care Hospital. Indian Journal of Critical Care Medicine, 20, 530-533.
https://doi.org/10.5005/ijccm-20-9-530
[13]  Ahmad, A., Iram, S., Hussain, S. and Yusuf, N.W. (2017) Diagnosis of Paediatric Sepsis by Automated Blood Culture System and Conventional Blood Culture. Journal of Pakistan Medical Association, 67, 192-195.
[14]  Peker, N., Couto, N., Sinha, B. and Rossen, J.W. (2018) Diagnosis of Bloodstream Infections from Positive Blood Cultures and Directly from Blood Samples: Recent Developments in Molecular Approaches. Clinical Microbiology and Infection, 24, 944-955.
https://doi.org/10.1016/j.cmi.2018.05.007
[15]  Iskandar, K., Molinier, L., Hallit, S., Sartelli, M., Hardcastle, T.C., Haque, M., et al. (2021) Surveillance of Antimicrobial Resistance in Low- and Middle-Income Countries: A Scattered Picture. Antimicrobial Resistance and Infection Control, 10, 63.
https://doi.org/10.1186/s13756-021-00931-w
[16]  Obaro, S., Lawson, L., Essen, U., Ibrahim, K., Brooks, K., Otuneye, A., et al. (2011) Community Acquired Bacteremia in Young Children from Central Nigeria—A Pilot Study. BMC Infectious Diseases, 11, Article No. 137.
https://doi.org/10.1186/1471-2334-11-137
[17]  WHO (2021) Antimicrobial Resistance in the WHO African Region: A Systematic Literature Review. WHO. Regional Office for Africa.
[18]  
https://fthgombe.gov.ng
[19]  Product Insert—B.D, T.M BACTEC. (Becton Dickinson).
https://www.bd.com
[20]  Krumperman, P.H. (1983) Multiple Antibiotic Resistance Indexing of Escherichia coli to Indentify High-Risk Sources of Fecal Contamination of Foods. Applied and Environmental Microbiology, 46, 165-170.
https://doi.org/10.1128/aem.46.1.165-170.1983
[21]  Isaacs-Long, Y., Myer, L. and Zar, H.J. (2017) Trends in Admissions, Morbidity and Outcomes at Red Cross War Memorial Children’s Hospital, Cape Town, 2004-2013. The South African Medical Journal, 107, 219-226.
https://doi.org/10.7196/SAMJ.2017.v107i3.11364
[22]  Nnebue, C.C., Ebenebe, U.E., Adogu, P.O., Adinma, E.D., Ifeadike, C.O. and Nwabueze, A.S. (2014) Adequacy of Resources for Provision of Maternal Health Services at the Primary Health Care Level in Nnewi, Nigeria. Nigerian Medical Journal, 55, 235-241.
https://doi.org/10.4103/0300-1652.132056
[23]  Oyedeji, R. and Abimbola, S. (2014) How Tertiary Hospitals Can Strengthen Primary Health Care in Nigeria. Nigerian Medical Journal, 55, 519-520.
https://doi.org/10.4103/0300-1652.144715
[24]  Prasad, N., Sharples, K.J., Murdoch, D.R. and Crump, J.A. (2015) Community Prevalence of Fever and Relationship with Malaria among Infants and Children in Low-Resource Areas. The American Journal of Tropical Medicine and Hygiene, 93, 178-180.
https://doi.org/10.4269/ajtmh.14-0646
[25]  Global Burden of Disease Study (2015) Global Burden of Disease Study 2015 (GBD 2015) Results. Insititute for Health Metrics and Evaluation (IHME), Seattle.
https://www.healthdata.org
[26]  Maze, M.J., Bassat, Q., Feasey, N.A., Mandomando, I., Musicha, P. and Crump, J.A. (2018) The Epidemiology of Febrile Illness in Sub-Saharan Africa: Implications for Diagnosis and Management. Clinical Microbiology and Infection, 24, 808-814.
https://doi.org/10.1016/j.cmi.2018.02.011
[27]  Kaboré, B., Post, A., Lompo, P., Bognini, J.D., Diallo, S., Kam, B.T.D., Rahamat-Langendoen, J., et al. (2021) Aetiology of Acute Febrile Illness in Children in a High Malaria Transmission Area in West Africa. Clinical Microbiology and Infection, 27, 590-596.
https://doi.org/10.1016/j.cmi.2020.05.029
[28]  Orekan, J., Barbe, B., Oeng, S., Ronat, J.B., Letchford, J., Jacob, J., Affolabi, D. and Hardy, L. (2021) Culture Media for Clinical Bacteriology in Low- and Middle-Income Countries: Challenges, Best Practices for Preparation and Recommendations for Improved Access. Review. Clinical Microbiology and Infection, 10, 1400-1408.
https://doi.org/10.1016/j.cmi.2021.05.016
[29]  Araujo da Silva, A.R., Jaszkowski, E., Schober, T., et al. (2020) Blood Culture Sampling Rate in Hospitalized Children as a Quality Indicator for Diagnostic Stewardship. Infection, 48, 569-575.
https://doi.org/10.1007/s15010-020-01439-y
[30]  Dramowski, A., Cotton, M.F., Rabie, H. and Whitelaw, A. (2015) Trends in Paediatric Bloodstream Infections at a South African Referral Hospital. BMC Pediatrics, 15, Article No. 33.
https://doi.org/10.1186/s12887-015-0354-3
[31]  Abubakar, I., Dalglish, S.L., Angell, B., Sanuade, O., Abimbola, S., Adamu, A.L., Adetifa, I.M., Colbourn, T., Ogunlesi, A.O., Onwujekwe, O., Owoaje, E.T., et al. (2022) The Lancet Nigeria Commission: Investing in Health and the Future of the Nation. The Lancet, 399, 1155-1200.
https://doi.org/10.1016/S0140-6736(21)02488-0
[32]  Nigeria Multidimentional Poverty Index. (2022)
https://mppn.org/wp-content/uploads/2022/11/MPI_web_Nov15_FINAL.pdf
[33]  Alizadeh, A.M., Kabiri, M.R. and Mohammadnia, M. (2016) Comparative Evaluation of Conventional and BACTEC Methods for Detection of Bacterial Infection. Tanaffos, 15, 112-116.
[34]  Barbé, B., Yansouni, C.P., Affolabi, D. and Jacobs, J. (2017) Implementation of Quality Management for Clinical Bacteriology in Low-Resource Settings. Clinical Microbiology and Infection, 23, 426-433.
https://doi.org/10.1016/j.cmi.2017.05.007
[35]  Ombelet, S., Natale, A., Ronat, J.-B., Vandenberg, O., Jacobs, J. and Hardy, L. (2022) Considerations in Evaluating Equipment-Free Blood Culture Bottles: A Short Protocol for Use in Low-Resource Settings. PLOS ONE, 17, Article ID: e0267491.
https://doi.org/10.1371/journal.pone.0267491
[36]  Wertheim, H.F.L., Huong, V.T.L. and Kuijper, E.J. (2021) Clinical Microbiology Laboratories in Low-Resource Settings, It Is Not Only about Equipment and Reagents, but also Good Governance for Sustainability. Clinical Microbiology and Infection, 271, 1389-1390.
[37]  Medugu, N. and Iregbu, K.C. (2017) Trends in Profiles of Bacteria Causing Neonatal Sepsis in Central Nigeria Hospital. African Journal of Clinical and Experimental Microbiology, 18, 49-52.
https://doi.org/10.4314/ajcem.v18i1.7
[38]  Uzodinma, C.C., Njokanma, F., Ojo, O., Falase, M. and Ojo, T. (2013) Bacterial Isolates from Blood Cultures of Children with Suspected Sepsis in an Urban Hospital in Lagos: A Prospective Study Using BACTEC Blood Culture System. The Internet Journal of Pediatrics and Neonatology, 16.
[39]  Shobowale, E.O., Ogunsola, F.T., Oduyebo, O.O. and Ezeaka, V.I. (2015) A Study on the Outcome of Neonates with Sepsis at the Lagos University Teaching Hospital. International Journal of Medicine and Biomedical Research, 4, 41-49.
[40]  El-Din, A.-Z.A.K., Mohamed, M.A., Gad, W.H. and Lotfy, G.S. (2010) Prevalence of Microbial Pathogens in Blood Cultures: An Etiological and Histopathological Study. Journal of Taibah University for Science, 3, 23-32.
https://doi.org/10.1016/S1658-3655(12)60017-X
[41]  Nkengasong, J.N., Nsubuga, P., Nwanyanwu, O., et al. (2010) Laboratory Systems and Services Are Critical in Global Health. American Journal of Clinical Pathology, 134, 368-373.
https://doi.org/10.1309/AJCPMPSINQ9BRMU6
[42]  Nkengasong, J.N., Yao, K. and Onyebujoh, P. (2018) Laboratory Medicine in Low- Income and Middle-Income Countries: Progress and Challenges. The Lancet, 391, 1873-1875.
https://doi.org/10.1016/S0140-6736(18)30308-8
[43]  Ogunkunle, T.O., Abdulkadir, M.B., Katibi, O.S., Bello, S.O., Raheem, R.A. and Olaosebikan, R. (2020) Pediatric Blood Culture Isolates and Antibiotic Sensitivity Pattern in a Nigerian Tertiary Hospital. Nigerian Journal of Medicine, 29, 261-264.
https://doi.org/10.4103/NJM.NJM_55_20
[44]  Deku, J.G., Dakorah, M.P., Lokpo, S.Y., Orish, V.N., Ussher, F.A., Kpene, G.E., et al. (2019) The Epidemiology of Bloodstream Infections and Antimicrobial Susceptibility Patterns: A Nine-Year Retrospective Study at St. Dominic Hospital, Akwatia, Ghana. Journal of Tropical Medicine, 2019, Article ID: 6750864.
https://doi.org/10.1155/2019/6750864
[45]  Seni, J., Mwakyoma, A.A., Mashuda, F., et al. (2019) Deciphering Risk Factors for Blood Stream Infections, Bacteria Species and Antimicrobial Resistance Profiles among Children under Five Years of Age in North-Western Tanzania: A Multicentre Study in a Cascade of Referral Health Care System. BMC Pediatrics, 19, Article No. 32.
https://doi.org/10.1186/s12887-019-1411-0
[46]  Agyeman, P.K., Schlapbach, L.J., Giannoni, E., et al. (2017) Epidemiology of Blood Culture-Proven Bacterial Sepsis in Children in Switzerland: A Population-Based Cohort Study. The Lancet Child & Adolescent Health, 1, 124-133.
https://doi.org/10.1016/S2352-4642(17)30010-X
[47]  Gay, L., Melenotte, C., Lakbar, I., Mezouar, S., Devaux, C., Raoult, D., et al. (2021) Sexual Dimorphism and Gender in Infectious Diseases. Frontiers in Immunology, 12, Article 698121.
https://doi.org/10.3389/fimmu.2021.698121
[48]  Mège, J.-L., Bretelle, F. and Leone, M. (2018) Sex and Bacterial Infectious Diseases. New Microbes and New Infections, 26, S100-S103.
https://doi.org/10.1016/j.nmni.2018.05.010
[49]  vom Steeg, L.G. and Klein, S.L. (2016) SeXX Matters in Infectious Disease Pathogenesis. PlOS Pathogens, 12, e1005374.
https://doi.org/10.1371/journal.ppat.1005374
[50]  Laupland, K.B. (2013) Incidence of Bloodstream Infection: A Review of Population-Based Studies. Clinical Microbiology and Infection, 19, 492-500.
https://doi.org/10.1111/1469-0691.12144
[51]  Moyo, S.J., Manyahi, J., Blomberg, B., Tellevik, M.G., Masoud, N.S., Aboud, S., Manji, K., Roberts, A.P., Hanevik, K., MØrch, K. and Langeland, N. (2020) Bacteraemia, Malaria, and Case Fatality among Children Hospitalized with Fever in Dar es Salaam, Tanzania. Frontiers in Microbiology, 11, Article 2118.
https://doi.org/10.3389/fmicb.2020.02118
[52]  Connor, N.E., Islam, M.S., Mullany, L.C., et al. (2022) Risk Factors for Community-Acquired Bacterial Infection among Young Infants in South Asia: A Longitudinal Cohort Study with Nested Case–Control Analysis. BMJ Global Health, 7, e009706.
https://doi.org/10.1136/bmjgh-2022-009706
[53]  Chukwumeze, F., Lenglet, A., Olubiyo, R., Lawal, A.M., Oluyide, B., Oloruntuyi, G., Ariti, C., Gomez, D., Roggeveen, H., Nwankwo, C., Augustine, N.A., Egwuenu, A., Maloba, G., Sherlock, M., Muhammad, S., Wertheim, H., Hopman, J. and Clezy, K. (2021) Multi-Drug Resistance and High Mortality Associated with Community- Acquired Bloodstream Infections in Children in Conflict-Affected Northwest Nigeria. Scientific Reports, 11, Article No. 20814.
https://doi.org/10.1038/s41598-021-00149-1
[54]  Kibuuka, A., Byakika-Kibwika, P., Achan, J., Yeka, A., Nalyazi, J.N., Mpimbaza, A., Rosenthal, P.J. and Kamya, M.R. (2015) Bacteremia among Febrile Ugandan Children Treated with Antimalarials Despite a Negative Malaria Test. The American Journal of Tropical Medicine and Hygiene, 93, 276-280.
https://doi.org/10.4269/ajtmh.14-0494
[55]  Crump, J.A., Ramadhani, H.O., Morrissey, A.B., Msuya, L.J., Yang, L.Y., Chow, S.C., Morpeth, S.C., Reyburn, H., Njau, B.N., Shaw, A.V., et al. (2011) Invasive Bacterial and Fungal Infections among Hospitalized HIV-Infected and HIV-Uninfected Children and Infants in Northern Tanzania. Tropical Medicine & International Health, 16, 830-837.
https://doi.org/10.1111/j.1365-3156.2011.02774.x
[56]  Ahmed, M., Mirambo, M.M., Mushi, M.F., Hokororo, A. and Mshana, S.E. (2017) Bacteremia Caused by Multidrug-Resistant Bacteria among Hospitalized Malnourished Children in Mwanza, Tanzania: A Cross Sectional Study. BMC Research Notes, 10, Article No. 62.
https://doi.org/10.1186/s13104-017-2389-z
[57]  Meremikwu, M.M., Nwachukwu, C.E., Asuquo, A.E., Okebe, J.U. and Utsalo, S.J. (2005) Bacterial Isolates from Blood Cultures of Children with Suspected Septicaemia in Calabar, Nigeria. BMC Infectious Diseases, 5, Article No. 110.
https://doi.org/10.1186/s13104-017-2389-z
[58]  Nwadioha, S.I., Nwokedi, E.O., Kashibu, E., Odimayo, M.S. and Okwori, E.E. (2010) A Review of Bacterial Isolates in Blood Cultures of Children with Suspected Septicemia in a Nigerian Tertiary Hospital. African Journal of Microbiology Research, 4, 222-225.
[59]  Samuel, S.O., Fadeyi, A., Akanbi, A.A., Ameen, N.B., Nwabuisi, C. and Onile, B.A. (2006) Bacterial Isolates of Blood Cultures in Patients with Suspected Septicaemia in Ilorin, Nigeria. African Journal of Medicine and Medical Sciences, 35, 137-141.
[60]  Onipede, A.O., Onayade, A.A., Elusanya, J.B.E., Obiajunwa, P.O., Ogundare, E.O.O., Olaniran, O.O., et al. (2009) Invasive Bacterial Isolates from Children with Severe Infections in a Nigerian Hospital. The Journal of Infection in Developing Countries, 3, 429-436,
https://doi.org/10.3855/jidc.413
[61]  Motayo, B.O., Akinduti, P., Ogiogwa, J.I., Akingbade, O.A. Aboderin, W.B., Adeyakinu, O. and Akinbo, J.A. (2011) Bacteriological Profile of Blood Cultures from Children with Presumedsepticaemia in a Tertiary Hospital in Abeokuta, Nigeria. Nature and Science, 9, 141-144.
[62]  Ogunlesi, T.A., Ogunfowora, O.B., Osinupebi, O. and Olanrewaju, D.M. (2011) Changing Trends in Newborn Sepsis in Sagamu, Nigeria: Bacterial Aetiology, Risk Factors and Antibiotic Susceptibility. Journal of Paediatrics and Child Health, 47, 5-11.
https://doi.org/10.1111/j.1440-1754.2010.01882.x
[63]  Kashibu, E., Ihesiulor, G.U. and Tasabeeh, M.H. (2012) Bacteria Associated with Septicemia in Children and Their Antimicrobial Sensitivity Pattern, Kano, Nigeria. Asian Journal of Biological and Life Sciences, 1, 174-177.
[64]  Kingsley, O.C., Ifeanyi, A.O., Edet, A.E. and Smart, O.C. (2013) Bacteriologic Profile and Antibiotic Susceptibility Pattern of Suspected Septicaemic Patients in Uyo, Nigeria. Research Journal of Medical Sciences, 7, 35-39.
[65]  Onubogu, U.C., Anochie, I.C. and Akani, N.A. (2015) Prevalence of Bacteraemia in Febrile, Under-Five Children in the Children’s Outpatient Clinic of University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Nigerian Journal of Paediatrics, 42, 93-97.
https://doi.org/10.4314/njp.v42i2.4
[66]  Peterside, O., Pondei, K. and Adeyemi, O.O. (2017) Bacteriological Profile of Childhood Sepsis at a Tertiary Health Centre in Southern Nigeria. Journal of Medical and Dental Science Research, 4, 11-15.
[67]  Adedokun, A.A., Onosakponome, E.O. and Nyenke, C.U. (2020) Incidence of Septicemia in Children Attending University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Journal of Advances in Medicine and Medical Research, 32, 26-35.
https://doi.org/10.9734/jammr/2020/v32i830463
[68]  Chukwu, E.E., Awoderu, O.B., Enwuru, C.A., et al. (2022) High Prevalence of Resistance to Third-Generation Cephalosporins Detected among Clinical Isolates from Sentinel Healthcare Facilities in Lagos, Nigeria. Antimicrobial Resistance & Infection Control, 11, Article No. 134.
https://doi.org/10.1186/s13756-022-01171-2
[69]  Oyekale, O.T., Ojo, B.O., Olajide, A.T. and Oyekale, O.I. (2022) Bacteriological Profile and Antibiogram of Blood Culture Isolates from Bloodstream Infections in a Rural Tertiary Hospital in Nigeria. African Journal of Laboratory Medicine, 11, a1807.
https://doi.org/10.4102/ajlm.v11i1.1807
[70]  Hill, P.C., Onyeama, C.O., Ikumapayi, U.N., Secka, O., Ameyaw, S., Simmonds N., Donkor, S.A., Howie, S.R., Tapgun, M., Corrah, T. and Adegbola, R.A. (2007) Bacteraemia in Patients Admitted to an Urban Hospital in West Africa. BMC Infectious Diseases, 7, Article No. 2.
https://doi.org/10.1186/1471-2334-7-2
[71]  Kitila, K.T., Taddese, B.D., Hailu, T., Sori, L. and Geleto, S. (2018) Assessment of Bacterial Profile and Antimicrobial Resistance Pattern of Bacterial Isolates from Blood Culture in Addis Ababa Regional Laboratory, Addis Ababa, Ethiopia. Journal of Clinical Microbiology, 7, Article ID: 1000312.
[72]  Acquah, S.E., Quaye, L., Sagoe, K., Ziem, J.B., Bromberger, P.I. and Amponsem, A.A. (2013) Susceptibility of Bacterial Etiological Agents to Commonly-Used Antimicrobial Agents in Children with Sepsis at the Tamale Teaching Hospital. BMC Infectious Diseases, 13, Article No. 89.
https://doi.org/10.1186/1471-2334-13-89
[73]  Crichton, H., O’Connell, N., Rabie, H., Whitelaw, A.C. and Dramowski, A. (2018) Neonatal and Paediatric Bloodstream Infections: Pathogens, Antimicrobial Resistance Patterns and Prescribing Practice at Khayelitsha District Hospital, Cape Town, South Africa. The South African Medical Journal, 108, 99-104.
https://doi.org/10.7196/SAMJ.2018.v108i2.12601
[74]  Adedoyin, O.T., Ibrahim, M., Johnson, W.B.R., Ojuawo, A.I., Mokuolu, O.A., Ernest, S.K., et al. (2013) Bacterial Isolates of Blood in Children with Suspected Septicaemia in a Nigerian Tertiary Hospital. The Tropical Journal of Health Sciences, 20.
[75]  Iroh Tam, P.-Y., Hernandez-Alvarado, N., Schleiss, M.R., Hassan-Hanga, F., Onuchukwu, C., Umoru, D., et al. (2016) Molecular Detection of Streptococcus pneumoniae on Dried Blood Spots from Febrile Nigerian Children Compared to Culture. PlOS ONE, 11, e0152253.
https://doi.org/10.1371/journal.pone.0152253
[76]  Popoola, O., Kehinde, A., Ogunleye, V., Adewusi, O.J., Toy, T., Mogeni, O.D., et al. (2019) Bacteremia Among Febrile Patients Attending Selected Healthcare Facilities in Ibadan, Nigeria. Clinical Infectious Diseases, 69, S466-S473.
https://doi.org/10.1093/cid/ciz516
[77]  Obaro, S.K., Hassan-Hanga, F., Olateju, E.K., Umoru, D., Lawson, L., Olanipekun, G., et al. (2015) Salmonella Bacteremia among Children in Central and Northwest Nigeria, 2008-2015. Clinical Infectious Diseases, 61, S325-S331.
https://doi.org/10.1093/cid/civ745
[78]  Marks, F., von Kalckreuth, V., Aaby, P., Adu-Sarkodie, Y., El Tayeb, M.A., Ali, M., et al. (2017) Incidence of Invasive Salmonella Disease in Sub-Saharan Africa: A Multicentre Population-Based Surveillance Study. The Lancet Global Health, 5, e310-e323.
https://doi.org/10.1016/S2214-109X(17)30022-0
[79]  Iroh-Tam, P.Y., Thielen, B.K., Obaro, S.K., Brearley, A.M., Kaizer, A.M., Chu, H., et al. (2017) Childhood Pneumococcal Disease in Africa—A Systematic Review and Meta-Analysis of Incidence, Serotype Distribution, and Antimicrobial Susceptibility. Vaccine, 35, 1817-1827.
https://doi.org/10.1016/j.vaccine.2017.02.045
[80]  Iliya, J., Shatima, D.R., Tagbo, B.N., Ayede, A.I., Fagbohun, A.O., Rasaq, A., et al. (2023) Pneumonia Hospitalizations and Mortality in Children 3 - 24-Month-Old in Nigeria from 2013 to 2020: Impact of Pneumococcal Conjugate Vaccine Ten Valent (PHiD-CV-10). Human Vaccines & Immunotherapeutics, 19, Article ID: 2162289.
https://doi.org/10.1080/21645515.2022.2162289
[81]  Bar-Zeev, N., Swarthout, T.D., Everett, D.B., Alaerts, M., Msefula, J., Brown, C., Bilima, S., Mallewa, J., King, C., von Gottberg, A., Verani, J.R., et al. (2021) Impact and Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine on Population Incidence of Vaccine and Non-Vaccine Serotype Invasive Pneumococcal Disease in Blantyre, Malawi, 2006–18: Prospective Observational Time-Series and Case-Control Studies. The Lancet Global Health, 9, e989-e998.
https://doi.org/10.1016/S2214-109X(21)00165-0
[82]  Hammitt, L.L., Etyang, A.O., Morpeth, S.C., Ojal, J., Mutuku, A., Mturi, N., Moisi, J.C., Adetifa, I.M., Karani, A., Akech, D.O., Otiende, M., et al. (2019) Effect of Ten- Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease and Nasopharyngeal Carriage in Kenya: A Longitudinal Surveillance Study. The Lancet, 393, 2146-2154.
https://doi.org/10.1016/S0140-6736(18)33005-8
[83]  John, M.S., Munilakshmi, P. and Deepa, T. (2015) Significance of Citrobacter as an Emerging Nosocomial Pathogen with Special Reference to It S Antibiotic Susceptibility Pattern in a tertiary Care Hospital, Nellore, AP. India. International Journal of Current Microbiology and Applied Sciences, 4, 841-847.
[84]  Nayar, R., Shukla, I. and Sultan, A. (2014) Epidemiology, Prevalence and Identification of Citrobacter Species in Clinical Specimens in a Tertiary Care Hospital in India. International Journal of Scientific and Research Publications, 4, 1-6.
[85]  Liu, L.H., Wang, N.Y., Wu, A.Y., Lin, C.C., Lee, C.M. and Liu C.P. (2018) Citrobacter freundii Bacteremia: Risk Factors of Mortality and Prevalence of Resistance Genes. Journal of Microbiology, Immunology and Infection, 51, 565-572.
https://doi.org/10.1016/j.jmii.2016.08.016
[86]  Ibrahim, H.A., Yakubu, Y.M., Farouk, A.G., Ambe, P. and Gadzama, G.B. (2021) Profile of Bacterial Pathogens Causing Infections in Children with Sickle Cell Anaemia in Maiduguri. Nigerian Postgraduate Medical Journal, 28, 218-224.
https://doi.org/10.4103/npmj.npmj_531_21
[87]  Iregbu, K.C., Zubair, K.O., Modibbo, I.F., Aigbe, A.I., Sonibare, S.A. and Ayoola, O.M. (2013) Neonatal Infections Caused by Escherichia coli at the National Hospital, Abuja: A Three-Year Retrospective Study. African Journal of Clinical and Experimental Microbiology, 14, 95-100.
https://doi.org/10.4314/ajcem.v14i2.9
[88]  Christopher, A., Mshana, S.E., Kidenya, B.R., Hokororo, A. and Morona, D. (2013) Bacteremia and Resistant Gram-Negative Pathogens among Under-Fives in Tanzania. Italian Journal of Pediatrics, 39, Article No. 27.
https://doi.org/10.1186/1824-7288-39-27
[89]  Musicha, P., Cornick, J.E., Bar-Zeev, N., French, N., Masesa, C., Denis, B., Kennedy, N., Mallewa, J., Gordon,, M.A., Msefula, C.L., Heyderman, R.S., et al. (2017) Trends in Antimicrobial Resistance in Bloodstream Infection Isolates at a Large Urban Hospital in Malawi (1998–2016): A Surveillance Study. The Lancet Infectious Diseases, 17, 1042-1052.
https://doi.org/10.1016/S1473-3099(17)30394-8
[90]  Habyarimana, T., Murenzi, D., Musoni, E., Yadufashije, C. and Niyonzima, N.F. (2021) Bacteriological Profile and Antimicrobial Susceptibility Patterns of Bloodstream infection at Kigali University Teaching Hospital. Infection and Drug Resistance, 23, 699-707.
https://doi.org/10.2147/IDR.S299520
[91]  Bhat, Y.R., Lewis, L.E. and Ke, V. (2011) Bacterial Isolates of Early-Onset Neonatal Sepsis and Their Antibiotic Susceptibility Pattern between 1998 and 2004: An Audit from a Center in India. Italian Journal of Pediatrics, 37, Article No. 32.
https://doi.org/10.1186/1824-7288-37-32
[92]  Sora, G.H., Gachara, G., Ichinose, Y., Ngayo, M.O., Odoyo, E. and Karama, M. (2020) Epidemiology of Bacterial Septicemia among Children under Five in Mbita Subcounty, South Nyanza, Kenya. Epidemiology, 10, 40-49.
[93]  Huang, C. (2020) Extensively Drug-Resistant Alcaligenes faecalis Infection. BMC Infectious Diseases, 20, Article No. 833.
https://doi.org/10.1186/s12879-020-05557-8
[94]  Mordi, R.M., Burke, M.E., Odjadjare, E.E., Enabulelen, S.A. and Umeh, O.J. (2015) Prevalence of Urinary Tract Infections among Pregnant Women in University of Benin Teaching Hospital (UBTH) Benin City, Nigeria. Journal of Asian Scientific Research, 5, 198-204.
https://doi.org/10.18488/journal.2/2015.5.4/2.4.198.204
[95]  Reddy, E.A., Shaw, A.V. and Crump, J.A. (2010) Community-Acquired Bloodstream Infections in Africa: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, 10, 417-432.
https://doi.org/10.1016/S1473-3099(10)70072-4
[96]  Marchello, C.S., Dale, A.P., Pisharody, S., Rubach, M.P. and Crump, J.A. (2019) A Systematic Review and Meta-Analysis of the Prevalence of Community-Onset Bloodstream Infections among Hospitalized Patients in Africa and Asia. Antimicrobial Agents and Chemotherapy, 64, e01974-19.
https://doi.org/10.1128/AAC.01974-19
[97]  Al-Zakhari, R., Suhail, M., Ataallah, B., Aljammali, S. and Grigos, A. (2020) Rare But Fetal Case of Cavitary Pneumonia Caused by Alcaligenes faecalis. Cureus, 12, e8934.
https://doi.org/10.7759/cureus.8934
[98]  Chowdhury, R.N., Akter, N., Ahmed, S. and Chowdhury, A.H. (2021) Comparison of Conventional and Automated Blood Culture Methods for the Diagnosis of Neonatal Septicemia. Bangladesh Journal of Medical Microbiology, 15, 12-18.
https://doi.org/10.3329/bjmm.v15i2.57815
[99]  Fuller, W.L., Aboderin, A.O., Yahaya, A., Adeyemo, A.T., Gahimbare, L., Kapona, O., Hamzat, O.T. and Bassoum, O. (2022) Gaps in the Implementation of National Core Elements for Sustainable Antimicrobial Use in the WHO-African Region. Frontiers in Antibiotics, 1, Article 1047565.
https://doi.org/10.3389/frabi.2022.1047565
[100]  Nyeko, R., Otim, F., Obiya, E.M. and Abala, C. (2022) Pre-Hospital Exposures to Antibiotics among Children Presenting with Fever in Northern Uganda: A Facility-Based Cross-Sectional Study. BMC Pediatrics, 22, Article No. 322.
https://doi.org/10.1186/s12887-022-03375-2
[101]  Valia, D., Ingelbeen, B., Kaboré, B., et al. (2022) Use of WATCH Antibiotics Prior to Presentation to the Hospital in Rural Burkina Faso. Antimicrobial Resistance & Infection Control, 11, Article No. 59.
https://doi.org/10.1186/s13756-022-01098-8
[102]  Sulis, G., Adam, P., Nafade, V., Gore, G., Daniels, B., Daftary, A., Das, J., Gandra, S. and Pai, M. (2020) Antibiotic Prescription Practices in Primary Care in Low-and Middle-Income Countries: A Systematic Review and Meta-Analysis. PLOS Medicine, 17, e1003139.
https://doi.org/10.1371/journal.pmed.1003139
[103]  Aboderin, A.O., Adeyemo, A.T., Olayinka, A.A., Oginni, A.S., Adeyemo, A.T., Oni, A.A., Olabisi, O.F., Fayomi, O.D., Anuforo, A.C., Egwuenu, A., Hamzat, O. and Fuller, W. (2021) Antimicrobial Use among Hospitalized Patients: A Multi-Center, Point Prevalence Survey across Public Healthcare Facilities, Osun State, Nigeria. Germs, 11, 523-535.
https://doi.org/10.18683/germs.2021.1287
[104]  Vounba, P., Loul, S., Tamadea, L.F. and Siawaya, J.F.D. (2022) Microbiology Laboratories Involved in Disease and Antimicrobial Resistance Surveillance: Strengths and Challenges of the Central African States. African Journal of Laboratory Medicine, 11, a1570.
https://doi.org/10.4102/ajlm.v11i1.1570
[105]  Roberts, T., Dahal, P., Shrestha, P., Schilling, W., Shrestha, R., Ngu, R., Huong, V.T., van Doorn, H.R., Phimolsarnnousith, V., Miliya, T. and Crump, J.A. (2022) Antimicrobial Resistance Patterns in Bacteria Causing Febrile Illness in Africa, South Asia and Southeast Asia: A Systematic Review of Published Aetiological Studies from 1980-2015. International Journal of Infectious Diseases, 122, 612-621.
https://doi.org/10.1016/j.ijid.2022.07.018
[106]  WHO (2021) Antimicrobial Resistance in the WHO African Region: A Systematic Literature Review. WHO. Regional Office for Africa.
[107]  Williams, P.C., Isaacs, D. and Berkley, J.A. (2018) Antimicrobial Resistance among Children in Sub-Saharan Africa. The Lancet Infectious Diseases, 18, e33-e44.
https://doi.org/10.1016/S1473-3099(17)30467-X
[108]  Shrestha, P., Cooper, B.S., Coast, J., Oppong, R., Do Thi Thuy, N., Phoda, T., et al. (2018) Enumerating the Economic Cost of Antimicrobial Resistance Per Antibiotic Consumed to Inform the Evaluation of Interventions Affecting Their Use. Antimicrobial Resistance & Infection Control, 7, Article No. 98.
https://doi.org/10.1186/s13756-018-0384-3
[109]  Bernabé, K.J., Langendorf, C., Fordnronat, J.-B. and Murphy, R.A. (2017) Antimicrobial Resistance in West Africa: A Systematic Review and Meta-Analysis. International Journal of Antimicrobial Agents, 50, 629-639.
https://doi.org/10.1016/j.ijantimicag.2017.07.002
[110]  WHO (2015) Guideline: Managing Possible Serious Bacterial Infection in Young Infants When Referral Is Not Feasible. World Health Organization.
[111]  Menkem, E.Z., Nanfah, A.L., Takang, T., Awah, L.R., Achua, K.A., Akume, S.E., et al. (2023) Attitudes and Practices of the Use of Third-Generation Cephalosporins among Medical Doctors Practicing in Cameroon. International Journal of Clinical Practice, 2023, Article ID: 8074413.
https://doi.org/10.1155/2023/8074413
[112]  Versporten, A., Bielicki, J., Drapier, N., et al. (2016) The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) Point Prevalence Survey: Developing Hospital-Quality Indicators of Antibiotic Prescribing for Children. Journal of Antimicrobial Chemotherapy, 71, 1106-1117.
https://doi.org/10.1093/jac/dkv418
[113]  Lester, R., Musicha, P., Van Ginneken, N., Dramowski, A., Hamer, D.H., Garner, P. and Feasey, N.A. (2020) Prevalence and Outcome of Bloodstream Infections Due to Third-Generation Cephalosporin-Resistant Enterobacteriaceae in Sub-Saharan Africa: A Systematic Review. Journal of Antimicrobial Chemotherapy, 75, 492-507.
[114]  Haindongo, E.H., Ndakolo, D., Hedimbi, M., Vainio, O., Hakenen, A. and Vuopio, J. (2023) Antimicrobial Resistance Prevalence of Escherichia coli and Staphylococcus aureus amongst Bacteremic Patients in Africa: A Systematic Review. Journal of Global Antimicrobial Resistance, 32, 35-43.
https://doi.org/10.1016/j.jgar.2022.11.016
[115]  Okomo, U., Akpalu, E.N.K., Le Doare, K., Roca, A., Cousens, S., Jarde, A., et al. (2019) Aetiology Invasive Bacterial Infection and Antimicrobial Resistance in Neonates in Sub Saharan AFRICA: A Systematic Review and Meta Analysis in Line with STROBE-IN Guidelines. The Lancet, 19, 1219-1234.
https://doi.org/10.1016/S1473-3099(19)30414-1
[116]  Droz, N., Hsia, Y., Ellis, S., Dramowski, A., Sharland, M. and Basmaci, R. (2019) Bacterial Pathogens and Resistance Causing Community Acquired Paediatric Bloodstream Infections in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Antimicrobial Resistance & Infection Control, 8, Article No. 207.
https://doi.org/10.1186/s13756-019-0673-5

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133