全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of the Biostimulant Based on the Mycorrhizae Consortium of the Glomeraceae Family in the Field to Improve the Production and Nutritional Status of Maize (Zea mays L.) Plants in Central Benin

DOI: 10.4236/aim.2023.136021, PP. 323-345

Keywords: Ecological Resilience, Microorganism, Plant Nutrition, Sustainable Agriculture, Zea mays L.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae arbuscular mycorrhizal fungi on the production and uptake of phosphorus, nitrogen and potassium of maize (Zea mays L.) plants in central Benin. The trials were set up in a farming environment with thirty-four producers. The experimental design was composed of three treatments installed at 34 producers. Three growth parameters were evaluated on 60 ème days after sowing. Grain yield, nutritional status of maize plants and mycorrhization parameters were determined at harvest. The results showed that the Glomeraceae + 50% NPK (NPK: azote-phosphore-potassium)_Urea treatment improved the height, the crown diameter and the leaf area by 17.85%, 21.79% and 28.32% compared to the absolute control and by 0.41%, 1.11% and 1.46% compared to the 100% NPK_Urea treatment, respectively. Similarly, grain yield improved by 45.87% with the use of Glomeraceae + 50% NPK_Urea compared to the absolute control and by 3.96% compared to the 100% NPK_Urea treatment. The Glomeraceae + 50% NPK_Urea significantly improved the phosphorus and potassium uptake of maize plants. With respect to nitrogen uptake, no statistical difference was observed between treatments. The mycorrhizae strains used improved root infection in the maize plants. We recorded 66% frequency and 40.5% intensity of mycorrhization. The biostimulant based on indigenous Glomeraceae combined with 50% NPK_Urea can be used as a strategy to restore soil health and improve maize productivity in Benin.

References

[1]  Adjile, A.N., Houssou, A.P.F., Monteiro, N., Fainou, M.C., Akissoe, N.H. and Toukourou, F. (2015) Characterization of the Gambari-Lifin Process (dehulled maize flour) and Influence of Maize Variety on Physicochemical and Rheological Quality. Journal Nature & Technology, No. 12, 141-149.
[2]  Zoffoun, A.G., Atchada, C.C., Yaoitcha, A.S., Sessou, E.K. and Chabi, R.B. (2018) Adaptation Strategies of Producers Facing the Impacts of Soil Depletion in the Upper Magou Basin in the Republic of Benin, Institut National des Recherches Agricoles du Bénin, Bibliothèque Nationale (BN), 4ème quarter, du Bénin, Dépôt légal No. 10899.
[3]  Batamoussi, H.M., Tokore Orou Mere, S.B.J., Yaya, M. and De Dieu Fabrice Akounnou, J. (2021) Performances Agronomiques de la variété QPM/FAABA du maïs (Zea mays L.) suivant les périodes de semis en condition de perturbations climatiques. Annales De l’Université De Parakou-Série Sciences Naturelles et Agronomie, 11, 25-32.
https://doi.org/10.56109/aup-sna.v11i1.23
[4]  Raklami, A., Bechtaoui, N., Tahiri, A., Anli, M., Meddich, A. and Oufdou, K. (2019) Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Frontiers in Microbiology, 10, Article 1106.
https://doi.org/10.3389/fmicb.2019.01106
[5]  Adeleke, B.S. and Babalola, O.O. (2020) The Endosphere Microbial Communities, a Great Promise in Agriculture. International Microbiology, 24, 1-17.
https://doi.org/10.1007/s10123-020-00140-2
[6]  Fadiji, A.E., Babalola, O.O., Santoyo, G. and Perazzolli, M. (2022) The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change Associated Abiotic Stresses on Crops. Frontiers in Microbiology, 12, Article 829099.
https://doi.org/10.3389/fmicb.2021.829099
[7]  Ojuederie, O.B., Olanrewaju, O.S. and Babalola, O.O. (2019) Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy, 9, Article 712.
https://doi.org/10.3390/agronomy9110712
[8]  Igiehon, N.O. and Babalola, O.O. (2018) Below-Ground-above-Ground Plant-Microbial Interactions: Focusing on Soybean, Rhizobacteria, and Mycorrhizal Fungi. The Open Microbiology Journal, 12, 261-279.
https://doi.org/10.2174/1874285801812010261
[9]  Sangay-Tucto, S. (2018) Study of the Impact of Mycorrhizal and Rhizobial Symbioses in the Domestication of Tara, Caesalpinia spinosa L. Interactions between Organisms. University of Montpellier, Universidad Peruana Cayetano Heredia.
[10]  Emmanuel, O.C. and Babalola, O.O. (2020) Productivity and Quality of Horticultural Crops through Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria. Microbiology Research, 239, Article ID: 126569.
https://doi.org/10.1016/j.micres.2020.126569
[11]  Hamza, N. (2020) Bioprotection and Biofertilization Potential of Arbuscular Mycorrhizae in Some Agricultural Ecosystems of Eastern Algeria, Ph.D. Thesis, Université Badji Mokhtar-Annaba, Annaba, 129.
[12]  Mohammed, D.J.A., Mohammed, A.O. and Fattah, O.A. (2022) Growth Response and Water Use Efficiency in Maize (Zea mays L) Inoculated with Different Mycorrhizal Inoculums. Anbar Journal of Agricultural Sciences, 20, 22-33.
[13]  Fortin, J.A., Plenchette, C. and Piche, Y. (2008) Les mycorhizes: La nouvelle révolution verte. Editions Multimondes, Montréal, 132 p.
[14]  Drain, A., Pfister, C., Zerbib, J., Leborgne-Castel, N., Roy, S., Courty, P.E. and Wipf, D. (2017) Mécanismes cellulaires et moléculaires et ingénierie écologique des mycorhizes à arbuscules. Les sols et la vie souterraine: des enjeux majeurs en agroécologie, Chapitre 12, QUAE, 328 p.
[15]  Grümberg, B.C., Conforto, A., Rovea, M., Boxler, G., March, C., Luna, M.J. and Vargas, G.S. (2010) La glomalina y surelación con la productividad del cultivo. Presented at the XXII Congreso Argentino de la Ciencia.
[16]  Photo credits: CAS, Axioma, Florendi, Florentaise, If Tech, Italpollina, Premier Tech, Tradecorp, Fotolia, Smact. (2015) Biostimulants: A Key to Better Production with Fewer Inputs Chambre Syndicale des Améliorants Organiques et Supports de Culture. Edition December.
[17]  Enebe, M.C. and Babalola, O.O. (2018) The Influence of Plant Growth-Promoting Rhizobacteria in Plant Tolerance to Abiotic Stress: A Survival Strategy. Applied Microbiology and Biotechnology, 102, 7821-7835.
https://doi.org/10.1007/s00253-018-9214-z
[18]  Crossay, T. (2018) Taxonomic Characterization of Arbuscular Mycorrhizal Fungi Native to Ultramafic Soils of New Caledonia; Analysis of Their Synergy Enabling Plant Adaptation to These Extreme Environments. Ph. D. Thesis, Université de la Nouvelle-Calédonie, Baco, 309.
[19]  Igiehon, O.N. and Babalola, O.O. (2021) Rhizobium and Mycorrhizal Fungal Species Improved Soybean Yield under Drought Stress Conditions. Current Microbiology, 78, 1615-1627.
https://doi.org/10.1007/s00284-021-02432-w
[20]  Oliveira, T.C., Rodrigues Cabral, J.S., Santana, L.R., Tavares, G.G., Santos, L.D.S., Paim, T.P., Müller, C., Silva, F.G., Costa, A.C., Souchie, E.L. and Mendes, G.C. (2021) The Arbuscular Mycorrhizal Fungus Rhizophagus Clarus Improve Physiological Tolerance to Drought Stress in Soybean Plants. 1-25. (Preprint)
https://doi.org/10.21203/rs.3.rs-1192151/v1
[21]  Marlin, S., Munif, G., Pur, W., Maya, M. and Irdika, M. (2021) Diversity and Abundance of Arbuscular Fungi Mycorrhizal (AMF) in Rhizosphere Zea mays in Tidal Swamp. Biodiversitas Journal of Biological Diversity, 22, 5071-5076.
https://doi.org/10.13057/biodiv/d221144
[22]  Khirani, S. and El Hadj-Khelil, A.O. (2019) Effect of Indigenous Arbuscular Mycorhizogenous Champions on the Growth of Wheat and Barley. Algerian Journal of Arid Environment, 9, 80-93.
[23]  Ortas, I., Iqbal, T. and Cem Yücel, Y. (2019) Mycorrhizae Enhances Horticultural Plant Yield and Nutrient Uptake under Phosphorus Deficient Field Soil Condition. Journal of Plant Nutrition, 42, 1152-1164.
https://doi.org/10.1080/01904167.2019.1609500
[24]  Askari, A., Reza Ardakani, M., Paknejad, F. and Hosseini, Y. (2019) Effects of Mycorrhizal Symbiosis and Seed Priming on Yield and Water Use Efficiency of Sesame under Drought Stress Condition. Scientia Horticulturae, 257, Article ID: 108749.
https://doi.org/10.1016/j.scienta.2019.108749
[25]  Aguégué, M.R., Noumavo, A.P., Dagbénonbakin, G., Agbodjato, A.N., Assogba, S., Koda, A.D. Adjanohoun, A. and Baba-Moussa, L. (2017) Arbuscular Mycorrhizal Fertilization of Corn (Zea mays L.) Cultivated on Ferrous Soil in Southern Benin, Journal of Agricultural Studies, 5, 99-115.
https://doi.org/10.5296/jas.v5i3.11881
[26]  Assogba, S., Noumavo, P.A., Dagbenonbakin, G., Agbodjato, N.A., Akpode, C., Koda, A.D., Aguégué, R.M., Bade, F., Adjanohoun, A., Rodriguez, A.F., de la Noval Pons, B.M. and Baba-Moussa, L. (2017) Improvement of Maize Productivity (Zea mays L.) by Mycorrhizal Inoculation on Ferruginous Soil in Center of Benin. International Journal of Sustainable Agricultural Research, 4, 63-76.
https://doi.org/10.18488/journal.70.2017.43.63.76
[27]  Koda, D.A., Noumavo, A.P., Dagbenonbakin, G., Agbodjato, A.N., Akpode, C., Assogba, S., Aguégué, M.R., Bade, F., Adjanohoun, A., Falcon Rodriguez, A., de la Noval Pons, B.M. and Baba-Moussa, L. (2018) Maize (Zea mays L.) Response to Mycorrhizal Fertilization on Ferruginous Soil of Northern Benin. Journal of Experimental Biology and Agricultural Sciences, 6, 919-928.
https://doi.org/10.18006/2018.6(6).919.928
[28]  Assogba, A.S., Ahoyo Adjovi, N., Agbodjato, A.N., Sina, H., Adjanohoun, A. and Baba-moussa, L. (2020) Evaluation of the Mixed Effect of Some Indigenous Strains of Arbuscular Mycorrhizal Fungi Under Greenhouse Conditions. European Scientific Journal, 16, 275.
https://doi.org/10.19044/esj.2020.v16n3p275
[29]  Aguégué, M.R., Ahoyo Adjovi, N.R., Houédjofonon, E.M., Djinadou, K.A., Koda, A.D., Adoko, Y.M., Danbaka, J., Kelomey, A., Adjanohoun, A. and Baba-Moussa, L. (2021) Financial Profitability of Maize Production with Bio-Fertilizer Based on Arbuscular Mycorrhizal Fungi Native to Benin. Journal of Development and Agricultural Economics, 13, 56-64.
[30]  Agbodjato, N.A., Assogba, S.A., Babalola, O.O., Koda, A.D., Aguégué, R.M., Sina, H., Dagbénonbakin, G.D., Adjanohoun, A. and Baba-Moussa, L. (2022) Formulation of Biostimulants Based on Arbuscular Mycorrhizal Fungi for Maize Growth and Yield. Frontiers in Agronomy, 4, Article 894489.
https://doi.org/10.3389/fagro.2022.894489
[31]  Hemissi, I., Labidi, S., Dhifalli, F., Hammami, R., Hachana, A., Hlel, D., Sifi, B. and Ben Jeddi, F. (2019) Effect of Mycorrhizal and Rhizobial Bio Inoculation on Yield Components of Durum Wheat (Triticum durum Desf.). Annales de l’INRA, 92, 66-81.
[32]  MAEP (2016) Catalog Béninois Des Espèces Et Variétés Végétales (CaBEV), 2nd Edition. Ministère De L’Agriculture De l’Elevage Et De La Pêche; INRAB/DPVPPAAO/ ProCAD/MAEP & CORAF/WAAPP, Bibliothèque Nationale Du Bénin, 4ème Trimestre Dépôt Légal No. 8982 Du 21 Octobre 2016.
[33]  Adjanohoun, A., Baba-Moussa, L., Glèlè kakaï, R., Allagbé, M., Yèhouénou, B., Gotoechan-Hodonou, H., Sikirou, R., Sessou, P. and Sohounhloué, D. (2011) Characterization of Rhizobacteria Potentially Promoting Vegetative Growth of Maize in Different Agrosystems of South-Benin. International Journal of Biology and Chemistry Sciences, 5, 433-444.
[34]  Walkley, A. and Black, I.A. (1934) An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
https://doi.org/10.1097/00010694-193401000-00003
[35]  Thomas, G.W. (1982) Exchangeable Cations, In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, Madison, Agronom, 154-157.
[36]  Bray, R.H. and Kurtz, L.T. (1945) Determination of Total, Organic and Available Forms of Phosphorus in Soils. Soil Science, 59, 39-46.
https://doi.org/10.1097/00010694-194501000-00006
[37]  Kjeldahl, J. (1883) Neue Methodezur Bestimmung des Stickstoffs in organischen, Körpern. Zeitschrift für analytische Chemie, 22, 366-382.
https://doi.org/10.1007/BF01338151
[38]  Gholami, A., Shahsavani, S. and Nezarat, S. (2009) The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize. World Academy of Science, Engineering and Technology, 49, 19-24.
[39]  Rivera, R., Fernández, F., Hernández-Jiménez, A., Martín, J.R. and Fernández, K. (2003) El manejo efectivo de la simbiosis micorrízica, una vía hacia la agricultura sostenible, Estudio de caso, el Caribe. Ediciones Instituto Nacional de Ciencias Agrícolas, La Habana, 1-42.
https://www.researchgate.net/publication/299979710
[40]  Fernández, F., Go’mez, R., Vanegas, L.F., Martynez, M.A., de la Noval, B.M. and Rivera, R. (2000) Producto Inoculante Micorrizogeno. Oficina Nacional De Propiedad Industrial, Patente, No. 22641, Cuba.
[41]  Yallou, C.G., Aïhou, K., Adjanohoun, A., Toukourou, M., Sanni, O.A., and Ali, D. (2010) Itinéraires Techniques de Production de Maïs au Bénin, Fiche technique, Dépôt légal No. 4922 du 3 Décembre, Bibliothèque Nationale du Bénin, 18.
[42]  INRAB (1995) Fiche Technique Sur Les Cultures Vivrières. Vol. 75, INRAB/MAEP: Institut National des Recherches du Bénin, Bénin.
[43]  Ruget, F., Bonhomme, R. and Chartier, M. (1996) Simple Estimation of Leaf Area of Growing Maize Plants. Agronomy, 16, 553-562.
https://doi.org/10.1051/agro:19960903
[44]  Ferro Valdés, E.M., Chirino González, E., Márquez Serrano, M., Mirabal Báez, E., Ríos Labrada, H., Guevara Hernández, F. and Alfaro Hernández, F. (2013) Experiencias obtenidas en el desarrollo participativo de híbridos lineales simples de maíz (Zea mays, L.) en condiciones de bajos Insumos Agrícolas. Cultivos Tropicales, 34, 61-69.
[45]  Metson, A.J. (1956) Methods of Chemical Analysis for Soil Survery Samples. Soil Science, 83, 245.
https://doi.org/10.1097/00010694-195703000-00016
[46]  Phillips, J.M. and Hayman, D.S. (1970) Improved Procedures for Cleaning Roots and Staining Parasitic and Vesicular Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Transactions of the British Mycological Society, 55, 158-161.
https://doi.org/10.1016/S0007-1536(70)80110-3
[47]  Giovannetti, M. and Mosse, B. (1980) An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist, 84, 89-101.
https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
[48]  Trouvelot, A., Kough, J.L. and Gianinazzi, P.V. (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson, V. and Gianinazzi, S., Eds., Physiological and Genetical Aspects of Mycorrhizae, INRA, Paris, 217-221.
[49]  Douglas, C.E. and Michael, F.A. (1991) On Distribution-Free Multiple Comparisons in the One-Way Analysis of Variance. Communications in Statistics-Theory and Methods, 20, 127-139.
https://doi.org/10.1080/03610929108830487
[50]  R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
[51]  Quemada, M. and Cabrera, M.L. (1995) CERES-N Model Predictions of Nitrogen Mineralized from Cover Crop Residues. Soil Science Society of American Journal, 59, 1059-1065.
https://doi.org/10.2136/sssaj1995.03615995005900040015x
[52]  Igué A.M., Saidou, A., Adjanohoun, A., Ezui, G., Attiogbe, P., Kpagbin, G. and Ouedraogo, J. (2013) Evaluation of Soil Fertility in Southern and Central Benin, Bull. Rech. Agron, Benin, Special Issue, Fertilisation of Maize, 12-23.
[53]  Pacheco Flores de Valgaz, A., Naranjo-Morán, J., Reyes Román, G., Oviedo-Anchundia, J., Ratti Torres, M. and Barcos-Arias, M. (2022) Discovering the Diversity of Arbuscular Mycorrhizal Fungi Associated with Two Cultivation Practices of Theobroma cacao. Diversity, 14, Article 651.
https://doi.org/10.3390/d14080651
[54]  Oliveira, R.S., Castro, P.M.L., Dodd, J.C. and Vosátka, M. (2006) Different Native Arbuscular Mycorrhizal Fungi Influence the Coexistence of Two Plant Species in a Highly Alkaline Anthropogenic Sediment. Plant and Soil, 287, 209-221.
https://doi.org/10.1007/s11104-006-9067-6
[55]  Pu, C., Yang, G., Li, P., Ge, Y., Garran, T.A., Zhou, X., Shen, Y., Zheng, H., Chen, M. and Huang, L. (2022) Arbuscular Mycorrhiza Alters the Nutritional Requirements in Salvia Miltiorrhiza and Low Nitrogen Enhances the Mycorrhizal Efficiency. Scientific Reports, 12, Article No. 1933.
https://doi.org/10.1038/s41598-022-17121-2
[56]  Ramírez-Serrano, B., Querejeta, M., Zhivko Minchev, Z., Gamir, J., Perdereau, E., Pozo, M.J, Dubreuil, G. and Giron, D. (2022) Mycorrhizal Benefits on Plant Growth and Protection against Spodoptera exigua Depend on N Availability. Journal of Plant Interactions, 17, 940-955.
https://doi.org/10.1080/17429145.2022.2120212
[57]  Fasusi, O., Amoo, A. and Babalola, O.O. (2021) Propagation and Characterization of Viable Arbuscular Mycorrhizal Fungal Spores within Maize Plant (Zea mays L.). Journal of the Science of Food and Agriculture, 101, 5834-5841.
https://doi.org/10.1002/jsfa.11235
[58]  Igiehon, N.O., Babalola, O.O., Cheseto, X. and Torto, B. (2021) Effects of Rhizobia and Arbuscular Mycorrhizal Fungi on Yield, Size Distribution and Fatty Acid of Soybean Seeds Grown under Drought Stress. Microbiological Research, 242, Article ID: 126640.
https://doi.org/10.1016/j.micres.2020.126640
[59]  Alori, E.T. and Babalola, O.O. (2018) Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Frontiers in Microbiology, 9, Article 2213.
https://doi.org/10.3389/fmicb.2018.02213
[60]  Koda, A.D., Yaoitcha, A.S., Allagbe, M., Agbodjato, N.A., Dagbenonbakin, G., Aguégué, M.R., Rivera, R., Adjanohoun, A. and Baba-Moussa, L. (2020) Effect of an Organic Fertilizer Based on Native Rhizophagus intraradices on Zea mays L. Yield in Northern Benin. Journal of Agricultural and Horticultural Research, 5, 8-17.
https://doi.org/10.9734/ajahr/2020/v5i230046
[61]  Assogba, A.S., Ahoyo Adjovi, N., Bello, S., Noumavo, A.P., Sina, H., Agbodjato, A.N., Adjanohoun, A. and Baba-Moussa, L. (2020) Inoculation of Native AMF Based Bio-Fertilizers for Improvement of Maize Productivity in the Center of Benin. African Journal of Agricultural Research, 16, 652-660.
[62]  Aguégué, M.R., Ahoyo Adjovi, N.R., Agbodjato, N.A., Noumavo, P.A., Assogba, A.S., Salami, H., Salako, V.K., Rivera R., Baba-Moussa, F., Adjanohoun, A., Glele Kakaï, R. and Baba-Moussa, L. (2021) Efficacy of Native Strains of Arbuscular Mycorrhizal Fungi on Maize Productivity on Ferralitic Soil in Benin. Agricultural Research, 11, 627-641.
https://doi.org/10.1007/s40003-021-00602-7
[63]  Gnamkoulamba, A., Tounou, A.K., Tchao, M., Tchabi, A., Adjevi, A.K.M. and Batawila, K. (2018) Field Evaluation of Growth Potential and Production of Rice (Oryza sativa L.) Variety IR841 Inoculated in Nursery By Four Arbuscular Mycorrhizal Fungi Strains. European Scientific Journal, 14, 1857-1881.
[64]  Ogou, A., Tchabi A., Tounou, A.K., Agboka, K. and Sokame, B.M. (2018) Effect of Four Strains of Arbuscular Mychorizal Fungi on Meloidogyne spp. Main Parasitic Nematode of Soybean (Glycine max L.) in Togo. Journal of Applied Biosciences, 127, 12758-12769.
https://doi.org/10.4314/jab.v127i1.1
[65]  Tobolbaï, R., Adamou, S. and Ngakou, A. (2018) Morphological and Structural Diversities of Indigenous Endomycorrhiza Communities Associated with Maize (Zea mays L.) in Northern Cameroonian Soils. Journal of Animal and Plant Sciences, 1, 6057-6073.
[66]  Tobolbaï, R., Ngakou, A., Toukam, T.S. and Adamou, S. (2021) Potential of Endogenous Arbuscular Mycorrhizae Fungi to Improve Soybean (Glycine max L.) Production in Northern Regions of Cameroon. Journal of Applied Biosciences, 163, 16846-16861.
[67]  Thoker, S.A. and Sapan, P. (2020) Effect of Arbuscular Mycorrhizal Fungi on Growth and Nutrient Status of Vigna unguiculata (L.). Advances in Zoology and Botany, 8, 461-467.
https://doi.org/10.13189/azb.2020.080511
[68]  Yang, R., Qin, Z., Wang, J., Zhang, X., Xu, S., Zhao, W. and Huang, Z. (2022) The Interactions between Arbuscular Mycorrhizal Fungi and Trichoderma longibrachiatum Enhance Maize Growth and Modulate Root Metabolome under Increasing Soil Salinity. Microorganisms, 10, Article 1042.
https://doi.org/10.3390/microorganisms10051042
[69]  Maougal, R.T. (2015) Plant Physiology Course, Institute of Nutrition, Food and Agro-Food Technologies (I.N.A.T.A.A), University Frères Mentouri Constantine, Ministry of Higher Education and Scientific Research, Democratic and Popular Republic of Algeria.
[70]  Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Rahou, Y.A., Raklami, A., Oufdou, K., Wahbi, S. and Meddich, A. (2021) Green Compost Combined with Mycorrhizae and Rhizobia: A Strategy for Improving Alfalfa Growth and Yield under Field Conditions. Gesunde Pflanzen, 73, 193-207.
https://doi.org/10.1007/s10343-020-00537-z
[71]  Matos, P.S., da Silva, C.F., Pereira, M.G., da Silva E.M.R., Tarre, R.M., Franco, A.L.C. and Zonta, E. (2022) Short-Term Modifications of Mycorrhizal Fungi, Glomalin and Soil Attributes in a Tropical Agroforestry. Acta Oecologica, 114, Article ID: 103815.
https://doi.org/10.1016/j.actao.2022.103815
[72]  Xin, Y., Fan, Y., Babalola, O.O., Zhang, X. and Yang, W. (2022) Legacy Effects of Biochar and Compost Addition on Arbuscular Mycorrhizal Fungal Community and Co-Occurrence Network in Black Soil. Microorganisms, 10, Article 2137.
https://doi.org/10.3390/microorganisms10112137
[73]  Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y. and Feng, H. (2019) Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. International Journal of Molecular Sciences, 20, Article 4199.
https://doi.org/10.3390/ijms20174199
[74]  Abdel-Fattah, G.M., Shukry, W.M., Shokr, M.M. and Ahmed, M.A. (2016) Application of Mycorrhizal Technology for Improving Yield Production of Common Bean Plants. International Journal of Applied Sciences and Biotechnology, 4, 191-197.
https://doi.org/10.3126/ijasbt.v4i2.15103
[75]  Chu, Q., Zhang, L., Zhou, J., Yuan, L., Chen, F., Zhang, F., Feng, G. and Rengel, Z. (2020) Soil Plant-Available Phosphorus Levels and Maize Genotypes Determine the Phosphorus Acquisition Efficiency and Contribution of Mycorrhizal Pathway. Plant and Soil, 449, 357-371.
https://doi.org/10.1007/s11104-020-04494-4
[76]  Fall, A.F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Badji, A., Ndiaye, A., Ndiaye, M., Kyakuwa, P., Anyoni, O.G., Kabaseke, C., Ronoh, A.K. and Ekwangu J. (2023) Combined Effects of Indigenous Arbuscular Mycorrhizal Fungi (AMF) and NPK Fertilizer on Growth and Yields of Maize and Soil Nutrient Availability. Sustainability, 15, Article 2243.
https://doi.org/10.3390/su15032243

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133