全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Weather Anomalies to Assess the 2021 Flood Events in Yaounde, Cameroon (Central Africa)

DOI: 10.4236/ajcc.2023.122014, PP. 292-320

Keywords: Weather Variability Analysis, Rainfall Anomalies, Precipitation Indices, Flood Hazard, Yaounde-Cameroon

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extreme weather anomalies such as rainfall and its subsequent flood events are governed by complex weather systems and interactions between them. It is important to understand the drivers of such events as it helps prepare for and mitigate or respond to the related impacts. In line with the above statements, quarter-hourly data for the year 2021 recorded in the Yaounde meteorological station were synthesized to come out with daily and dekadal (10-day averaged) anomalies of six climate factors (rainfall, temperature, insolation, relative humidity, dew point and wind speed), in order to assess the occurrences and severity of floods to changing weather patterns in Yaounde. In addition, Precipitation Concentration Index (PCI) was computed to evaluate the distribution and analyse the frequency and intensity of precipitation. Coefficient of variation (CV) was used to estimate the seasonal and annual variation of rainfall patterns, while Mann-Kendall (MK) trend test was performed to detect weather anomalies (12-month period variation) in quarter-hourly rainfall data from January 1st to December 31st 2021. The Standard Precipitation Index (SPI) was also used to quantify the rainfall deficiency of the observed time scale. Results reveal that based on the historical data from 1979 to 2018 in the bimodal rainfall forest zone, maximum and minimum temperature averages recorded in Yaounde in 2021 were mostly above historical average values. Precipitations were rare during dry seasons, with range value of 0 - 13.6 mm for the great dry season and 0 - 21.4 mm for the small dry season. Whereas during small and great rainy seasons, rainfalls were regular with intensity varying between 0 and 50 mm, and between 0 and 90.4 mm, respectively. The MK trend test showed that there was a statistical significant increase in rainfall trend for the month of August at a 5% level of significance, while a significant decreasing trend was observed in July and December. There was a strong irregular rainfall distribution during the months of February, July and December 2021, with a weather being mildly wetted during all the dry seasons and extremely wetted in August. Recorded flooding days within the year of study matched with heavy rainy days including during dry seasons.

References

[1]  Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and Time Series Trend Analysis of Rainfall and Temperature in North Central Ethiopia: A Case Study in Woleka Sub-Basin. Weather and Climate Extremes, 19, 29-41.
https://doi.org/10.1016/j.wace.2017.12.002
[2]  Assako Assako, R. J. (1997). Apport des systèmes d’information géographique dans l’analyse des risques d’inondation et de glissement de terrain à Yaounde1. In D. Bley, J. Champaud, P. Baudot, B. Brun, H. Pagezy, & N. Vernazza-Licht (Eds.), Villes du Sud et environnement, Travaux de la société d’écologie humaine (pp. 110-124). Bergier.
[3]  Birsan, M. V., Molnar, P., Burlando, P., & Pfaundler, M. (2005). Stream Flow Trends in Switzerland. Journal of Hydrology, 314, 312-329.
https://doi.org/10.1016/j.jhydrol.2005.06.008
[4]  Das, S. (2020). Flood Susceptibility Mapping of the Western Ghat Coastal Belt Using Multi-Source Geospatial Data and Analytical Hierarchy Process (AHP). Remote Sensing Application: Society and Environment, 20, Article ID: 100379.
https://doi.org/10.1016/j.rsase.2020.100379
[5]  De Luis, M., Raventós, J., González-Hidalgo, J., Sánchez, J., & Cortina, J. (2000). Spatial Analysis of Rainfall Trends in the Region of Valencia (East Spain). International Journal of Climatology, 20, 1451-1469.
https://doi.org/10.1002/1097-0088(200010)20:12<1451::AID-JOC547>3.0.CO;2-0
[6]  Djiangoué, B. (2017). Inondations et vulnérabilité des systèmes de production agricole: Cas du Logone (Extrême-Nord) et de la Bénoué (Nord) Cameroun. In N. K. Liba’a, B. Djiangoué, & W. C. Mvo (Eds.), Risques et catastrophes en zone Soudano-Sahelienne du Cameroun: Entre aléas, vulnérabilités et résiliences (pp 35-53). Editions Cheikh Anta Diop (Edi-CAD).
[7]  Ebode, V. B. (2022). Hydrological Variability and Flood Risk in a Forest Watershed Undergoing Accelerated Urbanization: The Case of Mefou (South Cameroon). Water Supply, 22, 8778-8794.
https://doi.org/10.2166/ws.2022.398
[8]  Esayas, B., Simane, B., Teferi, E., Ongoma, V., & Tefera, N. (2019). Climate Variability and Farmers’ Perception in Southern Ethiopia. Advances in Meteorology, 2019, Article ID: 7341465.
https://doi.org/10.1155/2019/7341465
[9]  Fotso-Nguemo, T. C., Vondou, D. A., Tchawoua, C., & Haensler, A. (2017). Assessment of Simulated Rainfall and Temperature from the Regional Climate Model REMO and Future Changes over Central Africa. Climate Dynamics, 48, 3685-3705.
https://doi.org/10.1007/s00382-016-3294-1
[10]  Gocic, M., & Trajkovic, S. (2013). Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Global and Planetary Change, 100, 172-182.
https://doi.org/10.1016/j.gloplacha.2012.10.014
[11]  Guenang, G. M., & Kamga, M. F. (2014). Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades. Journal of Applied Meteorology and Climatology, 53, 2310-2324.
https://doi.org/10.1175/JAMC-D-14-0032.1
[12]  Hänsel, S., Schucknecht, A., & Matschullat, J. (2016). The Modified Rainfall Anomaly Index (mRAI)—Is This an Alternative to the Standardised Precipitation Index (SPI) in Evaluating Future Extreme Precipitation Characteristics? Theoretical and Applied Climatology, 123, 827-844.
https://doi.org/10.1007/s00704-015-1389-y
[13]  Hare, W. (2003). Assessment of Knowledge on Impacts of Climate Change-Contribution to the Specification of Art. 2 of the UNFCCC: Impacts on Ecosystems, Food Production, Water and Socio-Economic Systems. WBGU Report, Potsdam-Berlin, Germany.
[14]  Ingram, W. (2016). Extreme Precipitation: Increases All Round. Nature Climate Change, 6, 443-444.
https://doi.org/10.1038/nclimate2966
[15]  IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[16]  IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[17]  IPCC (2023). The Intergovernmental Panel on Climate Change’s Sixth Assessment Report (AR6), Working Group II-Climate Change 2023: Impacts, Adaptation, and Vulnerability. IPCC Working Group II Technical Support Unit, c/o Carnegie Institution for Science, Stanford, CA 94305, USA.
[18]  Karabulut, M. (2015). Drought Analysis in Antakya-Kahramanmaraş Graben, Turkey Journal of Arid Land, 7, 741-754.
https://doi.org/10.1007/s40333-015-0011-6
[19]  Mann, H. B. (1945). Nonparametric Tests against Trend. The Econometric Society, 13, 245-259.
https://doi.org/10.2307/1907187
[20]  Mboka, J.-J. M., Kouna, S. B., Chouto, S., Djuidje, F. K., Nguy, E. B., Fotso-Kamga, G., Matsaguim, C. N., Fotso-Nguemo, T. C., Nghonda, J. P., Vondou, D. A., & Yepdo, Z. D. (2020). Simulated Impact of Global Warming on Extreme Rainfall Events over Cameroon during the 21st Century. Weather, 76, Article No. 3867.
https://doi.org/10.1002/wea.3867
[21]  Mediebou, C. (2023). Les inondations dans les bas-fonds de la commune de Yaounde 6 (Centre-Cameroun): Etat des lieux et perspectives. Revue espace géographique et société Marocaine, 69, 1-26.
[22]  MINEPDED (2015). Plan National d’Adaptation aux Changements Climatiques. Rapport d’activités, Ministère de l’Environnement, de la Protection de la Nature et du Développement Durable (MINEPDED), Yaounde, Cameroun.
[23]  Namondo, F. E., Nechia, W. M., & Ndonwi, A. S. (2022). Assessing Rainfall and Temperature Trend: Implication on Flood Patterns in Vulnerable Communities of Limbe and Douala, Cameroon. International Journal of Environmental Science, 7, 1-13.
http://www.iaras.org/iaras/journals/ijes
[24]  Nguemou, T. D. (2008). Hydrologie et transports solides dans un écosystème forestier urbanisé: Exemple du bassin versant du Mfoundi au centre sud du Cameroun. Mémoire DEA., Faculté des Sciences, Université de Yaounde I.
[25]  NIS (2019). Annuaire Statistique du Cameroun: Chapitre 4: Habitat et conditions de vie. National Institute for Statistics (NIS) Report.
[26]  Nsangou, D., Kpoumié, A., Mfonkac, Z., Ngouh, A. N., Fossi, D. H., Jourdan, C., Zobo Mbele, H., Mouncherou, O. F., Vandervaere, J.-P., & Ndam Ngoupayou, J. R. (2022). Urban Flood Susceptibility Modelling Using AHP and GIS Approach: Case of the Mfoundi Watershed at Yaounde in the South-Cameroon Plateau. Scientific African, 15, e01043.
https://doi.org/10.1016/j.sciaf.2021.e01043
[27]  Oliver, J. E. (1980). Monthly Precipitation Distribution: A Comparative Index. The Professional Geographer, 32, 300-309.
https://doi.org/10.1111/j.0033-0124.1980.00300.x
[28]  Onana, N. A., Leumbe, O., Lemotio, W., Sandjong, J. K., & Kamto, P. G. (2022). Contribution to Flood Hazard Mapping in the Mfoundi Catchment in Yaounde (Cameroon) through Multi Criteria Analysis (MCA) Based on the Hierarchical Analysis Process (AHP). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, 44, 13-27.
[29]  Saha, F., & Tchindjang, M. (2017). Rainfall Variability and Floods Occurrence in the City of Bamenda (Northwest of Cameroon). De Gruyter PESD, 11, 65-82.
https://doi.org/10.1515/pesd-2017-0006
[30]  Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389.
https://doi.org/10.1080/01621459.1968.10480934
[31]  Sighomnou, D. (2004). Analyse et redéfinition des régimes climatiques et hydrologiques du Cameroun: Perspective d’évolution des ressources en eau. Thèse de Doctorat d’état, Faculté de Sciences, Université de Yaounde I.
[32]  Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized Precipitation Index User Guide. World Meteorological Organization: Geneva, Switzerland.
[33]  Tabari, H. (2020). Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Scientific Reports, 10, Article No. 13768.
https://doi.org/10.1038/s41598-020-70816-2
[34]  Tanessong, R. S., Vondou, D. A., Djomou, Z. Y., & Moudi, P. I. (2017). WRF High Resolution Simulation of an Extreme Rainfall Event over Douala (Cameroon): A Case Study. Modeling Earth Systems and Environment, 3, 927-942.
https://doi.org/10.1007/s40808-017-0343-7
[35]  Tchekote, H., Djofang, N. P., Ndongo, B., & Atekoa, M. F. B. (2019). Enjeux socio-économique et environnementaux de l’occupation des zones à risques d’inondation du bassin versant de l’Abiergué (Yaounde-Cameroun). Revue Scientifique et Technique Foret et Environnement du Bassin du Congo, 13, 69-80.
[36]  Tramblay, Y., Villarini, G., El Khalki, M. E., Gründemann, G., & Hughes, D. (2021). Evaluation of the Drivers Responsible for Flooding in Africa. Water Resources Research, 57, 2021WR029595.
https://doi.org/10.1029/2021WR029595
[37]  WMO (2022). State of the Global Climate 2021. The World Meteorological Organization (WMO) Report WMO-No. 1290, Geneva.
[38]  Zogning, M. M. O. (2017). Contribution des systèmes d’information géographique pour la cartographie des zones à risques d’inondation à Yaounde: Application au bassin versant du Mfoundi. Mémoire de Master Spécialisé, Faculté des Sciences, Université de Liège, Belgique.
[39]  Zogning, M. M. O., Tsafelac, M., & Iaţu, C. (2011). Floods Risks in the Mfoundi Upstream Drainage Basin in Yaounde: A Response to Climatic Modifications or to Human Impacts? Present Environment and Sustainable Development, 5, 33-44.
[40]  Zogning, M. M. O., Tsafelac, M., Ursu, A., & Iatu, C. (2016). Contribution of Geographic Information Systems for the Mapping of Flooding Factors in Yaounde: The Case Study of Mfoundi Upstream Watershed. De Gruyter PESD, 10, 217-234.
https://doi.org/10.1515/pesd-2016-0019

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413