全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Navigating the Quantum Threat Landscape: Addressing Classical Cybersecurity Challenges

DOI: 10.4236/jqis.2023.132005, PP. 56-77

Keywords: Quantum Computing, Post-Quantum Cryptography (PQC), Quantum Hacking, Cybersecurity, Internet of Things (IoT), Shor’s Algorithm, Quantum Random Number Generators (QRNGs), Pseudorandom Number Generators (RNGs), Quantum Key Distribution (QKD), Symmetric Key Cryp-tography, Asymmetric Key Cryptography

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.

References

[1]  (2021) Post-Quantum Cryptography. Homeland Security.
https://www.dhs.gov/quantum
[2]  NSA/CSS (2020) Quantum Key Distribution (QKD) and Quantum Cryptography (QC). National Security Agency/Central Security Service.
https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
[3]  (2022) National Security Memorandum on Promoting United States Leadership in Quantum Computing While Mitigating Risks to Vulnerable Cryptographic Systems. Proclamation No. NSM-10 F.R. The White House.
https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
[4]  NIST (2022) NIST Announces First Four Quantum-Resistant Cryptographic Algorithms. NIST.
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
[5]  (2022) Preparing Critical Infrastructure for Post-Quantum Cryptography. CISA Insights.
https://www.cisa.gov/sites/default/files/publications/cisa_insight_post_quantum_cryptography_508.pdf
[6]  NSA Media Relations. (2022) NSA Releases Future Quantum-Resistant (QR) Algorithm Requirements for National Security Systems. NSA.
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3148990/nsa-releases-future-quantum-resistant-qr-algorithm-requirements-for-national-se
[7]  (2022) Proclamation No. M-23-02 F.R. Executive Office of the President Office of Management and Budget.
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
[8]  NIST (2022) Fourth PQC Standardization Conference. NIST.
https://csrc.nist.gov/events/2022/fourth-pqc-standardization-conference
[9]  (2022) Readout: National Quantum Initiative Centers Summit. The White House.
https://www.whitehouse.gov/ostp/news-updates/2022/12/05/readout-national-quantum-initiative-centers-summit/
[10]  (2022) Quantum Computing Cybersecurity Preparedness Act. Congress.
https://www.congress.gov/bill/117th-congress/house-bill/7535/text
[11]  (2023) FACT SHEET: Biden-Harris Administration Announces National Cybersecurity Strategy. The White House.
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
[12]  Statista (2022) Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030. Statista.
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
[13]  Prakash, V., Xie, S. and Huang, D. Y. (2022) Software Update Practices on Smart Home IoT Devices. ArXiv.
https://arxiv.org/pdf/2208.14367.pdf
[14]  Nick, G. (2023) How Many IoT Devices Are There in 2023? Techjury.
https://techjury.net/blog/how-many-iot-devices-are-there/#gref
[15]  Statista (2018) Projected Market Revenue of the Internet of Things (IoT) and Analytics Worldwide from 2015 to 2021, by Segment. Statista.
https://www.statista.com/statistics/913299/projected-global-revenue-of-the-internet-of-things-segment/
[16]  Bogomolec, X., Underhill, J.G. and Kovac, S.A. (2019) Towards Post-Quantum Secure Symmetric Cryptography: A Mathematical Perspective. International Association for Cryptologic Research.
https://eprint.iacr.org/2019/1208
[17]  Krelina, M. (2021) Quantum Technology for Military Applications. EPJ Quantum Technology, 8, Article No. 24.
https://doi.org/10.1140/epjqt/s40507-021-00113-y
[18]  Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shamsul Shaari, J., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P. and Wallden, P. (2020) Advances in Quantum Cryptography. Advances in Optics and Photonics, 12, 1012-1036.
https://doi.org/10.1364/AOP.361502
[19]  Leyden, J. (2022) OpenSSH 9.0 Bakes in Post-Quantum Cryptography to Future Proof against Attacks. The Daily Swig.
https://portswigger.net/daily-swig/openssh-9-0-bakes-in-post-quantum-cryptography-to-future-proof-against-attacks
[20]  Easterbrook, K. and Paquin, C. (n.d.) Post-Quantum TLS. Microsoft.
https://www.microsoft.com/en-us/research/project/post-quantum-tls/
[21]  Mell, P. and Grance, T. (2011) The NIST Definition of Cloud Computing. Computer Security. NIST.
https://doi.org/10.6028/NIST.SP.800-145
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
[22]  Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Helevi, S., Hoffstein, J., Lauter, K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Shahai, A. and Vaikuntanathan, V. (2018) Homomorphic Encryption Standard.
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
[23]  Will, M.A. and Ko, R.K.L. (2015) Chapter 5-A Guide to Homomorphic Encryption. In: The Cloud Security Ecosystem, Elsevier, Amsterdam, 101-127.
https://doi.org/10.1016/B978-0-12-801595-7.00005-7
[24]  Armknecht, F., Boyd, C., Carr, C., Gjosteen, K., Jaschke, A., Reuter, C.A. and Strand, M. (2015) A Guide to Fully Homomorphic Encryption. Cryptology ePrint Archive.
https://eprint.iacr.org/2015/1192.pdf
[25]  (n.d.) Homomorphic Encryption Standardization.
https://homomorphicencryption.org/introduction/
[26]  Van dalen, H.P. and Henkens, K. (2014) Comparing the Effects of Defaults in Organ Donation Systems. Social Science & Medicine, 106, 137-142.
https://doi.org/10.1016/j.socscimed.2014.01.052
[27]  McGrew, D.A. (2008) An Interface and Algorithms for Authenticated Encryption. RFC. (Memo)
https://www.rfc-editor.org/rfc/pdfrfc/rfc5116.txt.pdf
https://doi.org/10.17487/rfc5116
[28]  (2009) Chapter 3-An Introduction to Cryptography. In: Liu, D. and Author, L., Eds., Next Generation SSH2 Implementation, Elsevier, Amsterdam, 41-64.
https://doi.org/10.1016/B978-1-59749-283-6.00003-9
[29]  Santoli, T. and Schaffner, C. (2017) Using Simon’s Algorithm to Attack Symmetric-Key Cryptographic Primitives. Rinton Press, Princeton.
https://doi.org/10.26421/QIC17.1-2-4
https://dl.acm.org/doi/10.5555/3179483.3179487
[30]  Takagi, T. (2016) Post-Quantum Cryptography. Proceedings of 7th International Workshop (PQCrypto 2016), Fukuoka, 24-26 February 2016, 3.
https://link.springer.com/chapter/10.1007/978-3-319-29360-8_4#citeas
[31]  Barker, E., Barker, W., Burr, W., Polk, W. and Smid, M. (2016) Recommendation for Key Management—Part 1: General. Revision 3, NIST.
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-57p1r3.pdf
[32]  Guedes, E.B., De Assis, F.M. and Lula, B. (2012) Quantum Attacks on Pseudorandom Generators. Mathematical Structures in Computer Science, 23, 608-634.
https://doi.org/10.1017/S0960129512000825
[33]  Bird, J.J., Ekárt, A. and Faria, D.R. (2019) On the Effects of Pseudorandom and Quantum-Random Number Generators in Soft Computing. Soft Computing, 24, 9243-9256.
https://doi.org/10.1007/s00500-019-04450-0
[34]  Kelsey, J., Schneier, B., Wagner, D. and Hall, C. (1998) Cryptanalytic Attacks on Pseudorandom Number Generators. In: Vaudenay, S., Ed., FSE 1998: Fast Software Encryption, Lecture Notes in Computer Science, Vol. 1372, Springer, Berlin, 168-188.
https://doi.org/10.1007/3-540-69710-1_12
https://www.schneier.com/wp-content/uploads/2017/10/paper-prngs.pdf
[35]  European Commission (n.d.) The European Quantum Communication Infrastructure (EuroQCI) Initiative. European Commission.
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
[36]  (2023) QKISS: Developing Ready-to-Deploy European Quantum Key Distribution (QKD) Systems. Photonics & Space.
https://www.ixblue.com/north-america/qkiss-developing-ready-to-deploy-european-quantum-key-distribution-qkd-systems/
[37]  Egloff, F.J. and Smeets, M. (2020) Sandworm: A New Era of Cyberwar and the Hunt for the Kremlin’s most Dangerous Hackers. Journal of Cyber Policy, 5, 326-327.
https://doi.org/10.1080/23738871.2020.1808032
[38]  Gibney, A., Director. (2016) Zero Days. (Film) Magnolia Pictures.
https://www.amazon.com/Zero-Days-Colonel-Gary-Brown/dp/B01I2C0UV6
[39]  Qiskit (2023) Quantum Neural Networks. Qiskit.
https://qiskit.org/documentation/machine-learning/tutorials/01_neural_networks.html
[40]  Middleton, A. and Till, S. (2020) Quantum Information Processing Landscape 2020: Prospects for UK Defence and Security. DSTL.
https://uknqt.ukri.org/wp-content/uploads/2021/10/Quantum-Information-Processing-Landscape-2020.pdf
[41]  (n.d.) Cybersecurity: A Global Priority and Career Opportunity. University of North Georgia, Dahlonega.
https://ung.edu/continuing-education/news-and-media/cybersecurity.php
[42]  Johnson, J. (Host). (2023) ICYMI: The Race to Secure Federal Cryptographic Systems [Audio Podcast Episode]. In: Larsen, C. (Producer), The Buzz, ACT-IAC.
https://www.actiac.org/buzz
[43]  IBM (2021)Shared Services. IBM.
https://www.ibm.com/docs/en/psww2500/2.3.2.0?topic=reference-shared-services
[44]  Griffiths, C. (2023) The Latest 2023 Cyber Crime Statistics (updated April 2023). AAG.
https://aag-it.com/the-latest-cyber-crime-statistics/
[45]  Gopal, D., McMullen, L., Walls, A., Addiscott, R., Furtado, P., Porter, C., Isaka, O. and Winckless, C. (2023) Predicts 2023: Cybersecurity Industry Focuses on the Human Deal. Gartner.
https://www.bitsight.com/thank-you/gartner-predicts-2023
[46]  Jr Biden, J. and Harris, K. (2023) National Cybersecurity Strategy. The White House.
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
[47]  Dortch, M. (2017) User Education for Cybersecurity: Yes, It’s Worth It. invanti.
https://www.ivanti.com/blog/user-education-cybersecurity-yes-worth
[48]  Cain, A.A., Edwards, M.E. and Still, J.D. (2018) An Exploratory Study of Cyber Hygiene Behaviors and Knowledge. Journal of Information Security and Applications, 42, 36-45.
https://doi.org/10.1016/j.jisa.2018.08.002
[49]  Hirayama, Y., Ishibashi, K. and Nemoto, K., Eds. (2021) Hybrid Quantum Systems. Springer Nature, Berlin.
https://doi.org/10.1007/978-981-16-6679-7
[50]  IONQ (2023) What Is Hybrid Quantum Computing. IONQ.
https://ionq.com/resources/what-is-hybrid-quantum-computing

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413