全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

About the Thermodynamics and Aging of Self-Organizing Systems

DOI: 10.4236/aar.2023.124005, PP. 56-66

Keywords: Body Mass, Energy Dissipation, Neutral Operator, Structural Geometry, Information Density, Inertial Systems, Non-Inertial Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we also know that day by day the dissipation of energy per unit mass decreases in these organisms. We intend to verify if this decrease is only an expression of the second law of thermodynamics, or if it is related to the increase in mass that occurs in these organisms. For this, we set ourselves the following objectives: verify the correlation between total energy dissipation and the evolution of body mass, and verify the correlation between the dissipation of energy per unit of mass and the evolution of body mass. As a result of the data analysis, we found a high degree of correlation between total energy dissipation and the evolution of body mass. And we also found a high correlation between the energy dissipated per unit of mass and the evolution of body mass. We can conclude that self-organization produces not only an increase in mass, but also a decline in energy dissipation per unit mass beyond what is expected by the second law of thermodynamics.

References

[1]  Hulbert, A.J. and Else, P.L. (2004) Basal Metabolic Rate: History, Composition, Regulation, and Usefulness. Physiological and Biochemical Zoology, 77, 869-876.
https://doi.org/10.1086/422768
[2]  Speakman, J.R., Król, E. and Johnson, M.S. (2004) The Functional Significance of Individual Variation in Basal Metabolic Rate. Physiological and Biochemical Zoology, 77, 900-915.
https://doi.org/10.1086/427059
[3]  Barragán, J. and Sánchez, S. (2022) Beyond Biological Aging: Table Analysis. Advances in Aging Research, 11, 27-34.
https://doi.org/10.4236/aar.2022.112003
[4]  Barragán, J. and Sánchez, S. (2023) Aging and Biological Oscillation: A Question of Geometry. Advances in Aging Research, 12, 1-9.
https://doi.org/10.4236/aar.2023.121001
[5]  Solis Gamboa, D.A. (2010) El papel de la curvatura gaussiana en las transiciones orden-caos [The Role of Gaussian Curvature in Order-Chaos Transitions]. Universidad Autonoma de Yucatan, Mérida.
https://www.uaq.mx/ingenieria/publicaciones/eure-uaq/n16/en1606.pdf
[6]  Stilwell, D.J., Bollt, E.M. and Roberson, D.G. (2006) Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies. SIAM Journal on Applied Dynamical Systems, 5, 140-156.
https://doi.org/10.1137/050625229
[7]  Barabási, A.-L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509
[8]  White, C.R. and Kearney, M.R. (2013) Determinants of Inter-Specific Variation in Basal Metabolic Rate. Journal of Comparative Physiology B, 183, 1-26.
https://doi.org/10.1007/s00360-012-0676-5
[9]  Konarzewski, M. and Książek, A. (2013. Determinants of Intra-Specific Variation in Basal Metabolic Rate. Journal of Comparative Physiology B, 183, 27-41.
https://doi.org/10.1007/s00360-012-0698-z
[10]  Østbye, T., Malhotra, R. and Landerman, L.R. (2011) Body Mass Trajectories through Adulthood: Results from the National Longitudinal Survey of Youth 1979 Cohort (1981-2006). International Journal of Epidemiology, 40, 240-250.
https://doi.org/10.1093/ije/dyq142
[11]  West, G.B. and Brown, J.H. (2004) Life’s Universal Scaling Laws. Physics Today, 57, 36-43.
https://doi.org/10.1063/1.1809090
[12]  Sánchez, S. and Barragán, J. (2011) Metabolically Active Weight: Between Kleiber’s Law and the Second Law of Thermodynamics. Revista Argentina de Endocrinologia y Metabolismo, 48, 136-142.
[13]  Ciufolini, I. (2007) Dragging of Inertial Frames. Nature, 449, 41-47.
https://doi.org/10.1038/nature06071
[14]  Isaeva, V.V. (2012) Self-Organization in Biological Systems. Biology Bulletin, 39, 110-118.
https://doi.org/10.1134/S1062359012020069
[15]  Wedlich-Söldner, R. and Betz, T. (2018) Self-Organization: The Fundament of Cell Biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, Article ID: 20170103.
https://doi.org/10.1098/rstb.2017.0103
[16]  Ivanitskii, G.R. (2017) Self-Organizing Dynamic Stability of Far-from-Equilibrium Biological Systems. Physics-Uspekhi, 60, 705-730.
https://doi.org/10.3367/UFNe.2016.08.037871
[17]  Kamalov, T.F. (2010) Physics of Non-Inertial Reference Frames. AIP Conference Proceedings, 1316, 455-458.
https://doi.org/10.1063/1.3536452
[18]  Beisson, J., Bétermier, M., Bré, M.H., Cohen, J., Duharcourt, S., Duret, L., Kung, C., Malinsky, S., Meyer, E., Preer, J.R. and Sperling, L. (2010) Paramecium tetraurelia: The Renaissance of an Early Unicellular Model. Cold Spring Harbor Protocols, 2010, Article ID: Pdb-emo140.
https://doi.org/10.1101/pdb.emo140
[19]  Romero, D. (2016) Unicellular but Not Asocial. Life in Community of a Bacterium. International Microbiology, 19, 81-90.
[20]  Nanjundiah, V. (2016) Cellular Slime Mold Development as a Paradigm for the Transition from Unicellular to Multicellular Life. In: Niklas, K.J. and Newman, S.A., Eds., Multicellularity: Origins and Evolution, The MIT Press, Cambridge, 105.
https://doi.org/10.7551/mitpress/10525.003.0013
[21]  Leibo, S.P. and Sztein, J.M. (2019) Cryopreservation of Mammalian Embryos: Derivation of a Method. Cryobiology, 86, 1-9.
https://doi.org/10.1016/j.cryobiol.2019.01.007
[22]  Pegg, D.E. (2007) Principles of Cryopreservation. In: Day, J.G. and Stacey, G.N., Eds., Cryopreservation and Freeze-Drying Protocols. Methods in Molecular BiologyTM, Vol. 368, Humana Press, Totowa, 39-57.
https://doi.org/10.1007/978-1-59745-362-2_3
[23]  Sparks, A.E. (2015) Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33, 128-144.
https://doi.org/10.1055/s-0035-1546826
[24]  Pegg, D.E. (2002) The History and Principles of Cryopreservation. Seminars in Reproductive Medicine, 20, 5-14.
https://doi.org/10.1055/s-2002-23515
[25]  Erren, T.C. and Reiter, R.J. (2009) Defining Chronodisruption. Journal of Pineal Research, 46, 245-247.
https://doi.org/10.1111/j.1600-079X.2009.00665.x
[26]  Ortiz-Tudela, E., de la Fuente, M. and Mendiola, P. (2011) Chronodisruption and Ageing. Revista Española de Geriatría y Gerontología, 47, 168-173.
https://doi.org/10.1016/j.regg.2011.09.013
[27]  Galimberti, D. and Mazzola, G. (2021) Chronobiology and Chrononutrition: Relevance for Aging. In: Caruso, C. and Candore, G., Eds., Human Aging, Academic Press, Cambridge, 219-254.
https://doi.org/10.1016/B978-0-12-822569-1.00006-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413