全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主元素对CoFeNi系高熵合金组织性能影响的研究综述
A Research Review of the Effects of Principal Elements on Microstructure and Properties of CoFeNi Series High-Entropy Alloys

DOI: 10.12677/MEng.2023.102007, PP. 56-65

Keywords: 高熵合金,显微组织,力学性能
High-Entropy Alloys
, Microstructure, Mechanical Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

高熵合金是一种新型结构合金,相比传统合金,它具有更优异的硬度、耐腐蚀性和抗拉强度等性能,具有很高的研究价值。通过大量的实验研究发现,高熵合金的制备方法多样,且不同的合金元素添加能够改变其整体的性能,如:Cr、Mo、Ti、B元素可以提高高熵合金的硬度,Mn元素则可提高电阻率,Al、Cr可以改变高熵合金的相结构,Zr元素可以增强高熵合金的晶格畸变等。本文综合现有的研究结果,总结了高熵合金的常用制备工艺以及各元素对于高熵合金的组织性能的影响。
High-entropy alloys (HEAs) are a new type of structural alloy that exhibit superior properties such as hardness, corrosion resistance, and tensile strength compared to traditional alloys. Therefore, they have high research value. Through extensive experimental research, it has been found that HEAs can be prepared by various methods, and the addition of different alloying elements can change their overall properties. For example, Cr, Mo, Ti, and B elements can increase the hardness of HEAs, Mn element can increase their resistivity, Al and Cr elements can alter their phase structure, and Zr element can enhance their lattice distortion. This paper summarizes the common preparation processes of HEAs and the effects of different elements on their microstructure and properties based on existing research results.

References

[1]  钟永录, 董应虎, 张瑞卿, 王昆昆, 方俊晓, 孙文. 主元对高熵合金组织及性能影响的研究综述[J]. 热加工工艺, 2019, 48(12): 6-8+11.
[2]  Yong, Z., Zou, T.T., Zhi, T., et al. (2014) Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science, 61, 1-93.
https://doi.org/10.1016/j.pmatsci.2013.10.001
[3]  Tong, C.J., Chen, Y.L. and Yeh, J.W. (2005) Mechanical Performance of the AlxCoCrFeNi hiGh-Entropy Alloy System with Multiprincipal Elements. Metallurgical & Materials Transactions Part A, 36, 1263-1271.
https://doi.org/10.1007/s11661-005-0218-9
[4]  Miracle, D.B. and Senkov, O.N. (2017) A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia, 122, 448-511.
https://doi.org/10.1016/j.actamat.2016.08.081
[5]  杜黎明. Al0.25CoCrFeNi高熵合金渗氮层的高温摩擦磨损性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2019, 14-16.
[6]  Zhang, Y., Lu, Z.P., Ma, S.G., et al. (2014) Guidelines in Predicting Phase Formation of High-Entropy Alloys. MRS Communications, 4, 57-63.
https://doi.org/10.1557/mrc.2014.11
[7]  梁秀兵, 万义兴, 莫金勇, 张志彬, 胡振峰, 陈永雄. 新型高温高熵合金材料研究进展[J]. 科技导报, 2021, 39(11): 96-108.
[8]  Qiao, J.W., Ma, S.G., Huang, E.W., et al. (2011) Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures. Materials Science Forum, 688, 419-425.
https://doi.org/10.4028/www.scientific.net/MSF.688.419
[9]  郭亚雄, 刘其斌, 周芳. 激光熔覆高熔点AlCrFeMoNbxTiW高熵合金涂层组织及耐磨性能[J]. 稀有金属, 2017, 41(12): 1327-1332.
[10]  孙驰驰, 张艳, 张静, 等. CoCrFeNi系高熵合金耐腐蚀性能研究进展[J]. 特种铸造及有色合金, 2020, 40(5): 557-562.
[11]  唐群华, 戴品强, 花能斌. Al0.3CoCrFeNi纳米晶高熵合金在碱性溶液中的电化学性能[J]. 机械工程材料, 2015, 39(12): 1-4+29.
[12]  张士陶, 杜旭, 李文戈, 等. 等离子喷涂FeCoCrNiMo高熵合金涂层高温氧化行为的研究[J]. 表面技术, 2022, 51(5): 90-98+110.
[13]  宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457.
[14]  郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(s2): 1330-1333.
[15]  Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567
[16]  Yeh, J.W. (2006) Recent Progress in High-Entropy Alloys. European Journal of Control, 31, 633-648.
https://doi.org/10.3166/acsm.31.633-648
[17]  赵海朝, 乔玉林, 梁秀兵, 胡振峰, 陈永雄. 轻质高熵合金的研究进展与展望[J]. 稀有金属材料与工程, 2020, 49(4): 1457-1468.
[18]  赵林飞, 李慧, 梁精龙. 高熵合金制备工艺的研究进展[J]. 腐蚀与防护, 2021, 42(7): 42-47.
[19]  王世伟, 周晖, 徐莺歌, 等. CoCrFeNiWx高熵合金在室温及900℃下的摩擦磨损性能[J/OL]. 摩擦学学报: 1-13.
https://doi.org/10.16078/j.tribology.2023005, 2023-03-07.
[20]  郭顺, 王朋坤, 顾介仁, 彭勇, 徐俊强, 周琦. 电弧熔炼Ti6Al4V/B4C复合材料微观组织与力学性能[J]. 焊接学报, 2022, 43(9): 62-68+117.
[21]  季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
[22]  田永强, 苑清英, 付安庆, 等. Co1.5CrFeNi1.5Mo0.5Ti0.5在不同pH值的3.5% NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403+409.
[23]  王昕阳, 刘谦, 任海滔, 李湛, 许诠, 黄燕滨, 郭一鸣. 钛元素含量对CoCrFeNiTi高熵合金涂层硬度及耐磨性能的影响[J]. 表面技术, 2023, 52(1): 47-55.
[24]  李礼, 叶宏, 刘越, 等. 激光熔覆AlCoCrFeNiCu高熵合金工艺优化及耐蚀性研究[J]. 表面技术, 2022, 51(7): 388-396.
[25]  袁碧亮, 李传强, 董勇, 等. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[26]  姜越, 周广泰, 程思梦, 等. CrFeCoNiTix高熵合金组织与性能[J]. 哈尔滨理工大学学报, 2020, 25(6): 112-118.
[27]  蒋烨, 陈可, 王伟. 机械合金化法制备AlCoNiFeCr高熵合金涂层[J]. 中国有色金属学报, 2018, 28(9): 1784-1790.
[28]  Marder, R., Estournes, C., Chevallier, G., et al. (2014) Plasma in Spark Plasma Sintering of Ceramic Particle Compacts. Scripta Materiala, 82, 57-60.
https://doi.org/10.1016/j.scriptamat.2014.03.023
[29]  张超, 刘杰, 王晓花, 等. 烧结方式对CoCrNi中熵合金组织及力学性能的影响[J]. 稀有金属材料与工程, 2022, 51(7): 2673-2680.
[30]  韩杰胜, 吴有智, 孟军虎, 等. 放电等离子烧结制备MoNbTaW难熔高熵合金[J]. 稀有金属材料与工程, 2019, 48(6): 2021-2026.
[31]  黄纯可, 李伟, 刘平, 等. 磁控溅射法制备AlxCoCrFeNi高熵合金薄膜的微观组织和力学性能研究[J]. 功能材料, 2017, 48(6): 6144-6148.
[32]  Takeuchi, A. and Inoue, A. (2005) Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46, 2817-2829.
https://doi.org/10.2320/matertrans.46.2817
[33]  Guo, S., Ng, C., Lu, J., et al. (2011) Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys. Journal of Applied Physics, 109, Article ID: 103505.
https://doi.org/10.1063/1.3587228
[34]  Zhang, Y., Zhou, Y.J., Lin, J.P., et al. (2008) Solid-Solution Phase Formation Rules for Multi-Component Alloys. Advanced Engineering Materials, 10, 534-538.
https://doi.org/10.1002/adem.200700240
[35]  Sheng, G.U.O. and Liu, C.T. (2011) Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase. Progress in Natural Science: Materials International, 21, 433-446.
https://doi.org/10.1016/S1002-0071(12)60080-X
[36]  李思念, 黄海鸿, 赵伦武, 等. 外加磁场对等离子熔覆FeCoNiCr0.5B高熵合金涂层组织与性能的影响[J]. 机械工程学报, 2022, 58(13): 251-260.
[37]  齐兆鑫, 梁卉, 赵延周, 等. Al含量对CoFeNi2V0.5高熵合金微观组织和力学性能的影响[J]. 铸造, 2022, 70(9): 1047-1053.
[38]  江佳阳, 杜景红, 严继康, 等. 粉末冶金法制备AlxCuFeNiCoCr高熵合金及其性能[J]. 稀有金属材料与工程, 2022, 51(2): 392-399.
[39]  Joseph, J., Jarvis, T., Wu, X., et al. (2015) Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys. Materials Science and Engineering: A, 633, 184-193.
https://doi.org/10.1016/j.msea.2015.02.072
[40]  付志强, 陈维平, 方思聪. Cr对CoFeNiAl0.6Ti0.4的合金化行为与组织的影响[J]. 稀有金属材料与工程, 2014, 43(10): 2411-2414.
[41]  高炜, 余竹焕, 阎亚雯, 王晓慧, 刘旭亮, 杜伟. Cr对FeCoNiAlCrx高熵合金组织与力学性能的影响[J]. 材料工程, 2023, 51(2): 91-97.
[42]  董琬晴. Zr、Nb元素添加对CoFeMnNi系高熵合金组织结构与性能影响的研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2020.
[43]  张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响[J]. 稀有金属材料与工程, 2021, 50(10): 3640-3647.
[44]  时海芳, 李强, 刘忆. Si含量对氩弧熔覆AlCuFeNiCoSix高熵合金涂层组织及性能的影响[J]. 材料保护, 2022, 55(5): 18-22.
[45]  邢逸凡, 王伟丽, 郑风勤. Mn对CoCrFeNi基高熵合金组织及性能的影响[J]. 热加工工艺, 2020, 49(10): 37-40.
[46]  梁维中, 吴万东, 关升, 齐凯, 王洋, 陈永生. CrFe2Ni2Nb0.3Mox高熵合金微观组织及力学性能[J]. 黑龙江科技大学学报, 2021, 31(6): 732-737.
[47]  包晔峰, 谢秉錡, 宋亓宁, 等. 高熵合金FeCoCrNiB0.2Mox激光熔覆层抗冲蚀性能[J]. 焊接学报, 2021, 42(5): 7-13.
[48]  谢红波, 刘贵仲, 郭景杰. Mn、V、Mo、Ti、Zr元素对AlFeCrCoCuX高熵合金组织与高温氧化性能的影响[J]. 中国有色金属学报, 2015, 25(1): 103-110.
[49]  姜越, 程思梦, 祖红梅. Ti元素对CrTeCoNiTix高熵合金组织及性能的影响[J]. 哈尔滨理工大学学报, 2018, 23(3): 149-152.
[50]  赵龙志, 喻世豪, 赵明娟, 唐延川, 焦海涛, 李劲, 宋立军. B对FeCoCrNiSiBx高熵合金激光熔覆层组织和硬度的影响[J]. 金属热处理, 2020, 45(10): 1887-190.
[51]  侯丽丽, 郭强, 要玉宏, 等. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413