全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

管柱敲击振动信号时频分析
Time-Frequency Analysis of Pipe Percussive Vibration Signals

DOI: 10.12677/OJAV.2023.112009, PP. 75-87

Keywords: 管柱,敲击,振动信号,频谱,时频分析
Pipe
, Percussion, Vibration Signal, Frequency Spectrum, Time-Frequency Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

开展管柱敲击振动研究,对了解管柱振动波传播机理与开发管柱振动信息传输技术具有重要意义。本文采用CoCo80四通道采集仪,在不同实验条件下采集PVC管和钢管的敲击振动信号;运用时频分析法,分析了敲击振动信号的组成及时频特征,描述了在管柱敲击振动中普遍存在的管柱刚体加速度运动现象。研究表明,敲击振动信号对位置变化具有很强的敏感性;PVC管敲击振动信号的频谱呈典型的宽频分布,而钢管柱敲击振动信号频谱成分相对丰富,具有倍频程特征,可以利用敲击振动信号的频谱来直接识别管柱材料。上述成果可以为下一步研究振动信号建模创造有利的条件。
Research on percussive vibration of pipe is of great significance to understand the mechanism of wave propagation and develop the technology of signal transmission in tubular string. In this study, percussive vibration test of PVC pipe and steel pipe was carried out. Vibration signals were collected by CoCo80 multi-channel acoustic signal collector under different experimental conditions. With Time-Frequency Analysis, the composition and time-frequency feature of signals were analyzed, the rigid-body acceleration motion and its universality in pipe percussive vibration were demonstrated. Results show that the signals are sensitive to knock location. The frequency spectrum of PVC pipe signals shows a typical broadband distribution, while the frequency spectrum of steel ones is relatively rich in composition and shows octave features. And the spectrum can be used to directly identify the material of tubular string. The results above can create favorable conditions for the next research of vibration signal modeling.

References

[1]  郭鑫, 彭博, 丁保安, 等. 柴油机齿轮敲击噪声分析与优化[J]. 内燃机与动力装置, 2021, 38(6): 54-58.
[2]  周敏瑞, 胡爽, 夏志鹏, 等. 汽油发动机部分负荷工况PCV阀敲击噪声优化[J]. 小型内燃机与车辆技术, 2022, 51(5): 68-73.
[3]  Armstrong, P.R., Stone, M.L. and Brusewitz, G.H. (1997) Peach Firmness Determination Using Two Dif-ferent Nondestructive Vibrational Sensing Instruments. Transactions of the ASAE, 40, 699-703.
https://doi.org/10.13031/2013.21289
[4]  Shmulevich, I., Galili, N. and Rosenfeld, D. (1996) Detection of Fruit Firmness by Frequency Analysis. Transactions of the ASAE, 39, 1047-1055.
https://doi.org/10.13031/2013.27595
[5]  危艳君, 饶秀勤, 漆兵, 等. 基于西瓜声学特性测定其成熟度[J]. 农产品加工(学刊), 2012(1): 8-10.
[6]  Oveisi, Z., Minaei, S., Rafiee, S., et al. (2014) Application of Vibration Response Technique for the Firmness Evaluation of Pear Fruit during Storage. Journal of Food Science and Technology, 51, 3261-3268.
https://doi.org/10.1007/s13197-012-0811-z
[7]  吴雪. 鸡蛋裂纹损伤检测的声振分析方法研究[J]. 食品与机械, 2014(6): 10-13.
[8]  李瑾行, 鸿彦吴, 叶丽, 侯天浩, 陈子正. 基于敲击声音信号的墙体内管道探测方法[J]. 国外电子测量技术, 2022, 41(2): 1-6.
[9]  郭开龙, 张厚江, 管成, 龚强. 木构件局部敲击信号的时域分析与研究[J]. 林业机械与木工设备, 2019, 47(2): 42-46, 53.
[10]  刘利平, 蒋柳成, 乔乐乐, 孙建, 高世妍. 基于时频分帧能量熵的陶瓷制品敲击声波信号特征识别[J]. 应用声学, 2023, 42(1): 57-66.
[11]  Shah, V. and Gardner, W. (2004) Design Considerations for a New High Data Rate LWD Acoustic Telemetry System. SPE Asia Pacific Oil and Gas Con-ference and Exhibition, Perth, October 2004, SPE-88636-MS.
https://doi.org/10.2118/88636-MS
[12]  Neff, J.M. and Camwell, P.L. (2007) Field-Test Results of an Acoustic MWD System. The SPE/IADC Drilling Conference, Amsterdam, February 2007, SPE-105021-MS.
https://doi.org/10.2118/105021-MS
[13]  Parker, T. and Korism, T. (2015) New Sensors Improve Data Gathering in Extreme Drilling Environment. E & P, Houston, Tex.
[14]  刘清友, 马德坤. 钻柱纵向振动模型的建立及求解方法[J]. 西南石油大学学报(自然科学版), 1998, 20(4): 55-58.
[15]  高岩, 刘志国, 郭学增. 钻柱轴向振动固有频率的计算和测量[J]. 西安石油大学学报(自然科学版), 2000, 15(1): 39-43.
[16]  杜勇, 胡建斌, 李艳萍, 等. 声波传输测试技术在油田的应用[J]. 测控技术, 2005, 24(11): 76-78.
[17]  孙晓光, 刘广智, 冯遵城, 等. 油井参数声传输及井下发射控制[J]. 中国海洋大学学报(自然科学版), 1999, 29(4): 675-679.
[18]  张美玲, 闫向宏, 刘文丽, 等. 非周期型理想钻柱系统声传播特性研究[J]. 振动与冲击, 2012, 31(1): 72-75.
[19]  赵国山, 王斌斌, 都振川, 等. 钻柱信道中声波信号传输性能研究[J]. 石油机械, 2014, 42(10): 9-12.
[20]  Li, C., Chang, J., Fan, S., et al. (2016) Analyzing the Validity of a DFT-Based Improved Acoustic OFDM Transmission along Rotating Simulated Drillstring. Mechanical Systems & Signal Processing, 81, 447-460.
https://doi.org/10.1016/j.ymssp.2016.04.003
[21]  Cawley, P. and Adams, R.D. (1988) The Mechanics of the Coin-Tap Method of Non-Destructive Testing. Journal of Sound and Vibration, 122, 299-316.
https://doi.org/10.1016/S0022-460X(88)80356-0
[22]  吕苗荣, 古德生. 工程信号处理新方法探索——最优频率匹配法和模式滤波法研究与应用[M]. 上海: 上海交通大学出版社, 2014: 6-8.
[23]  Cawley, P. and Adams, R.D. (1989) Sensitivity of the Coin-Tap Method of Nondestructive Testing. Materials Evaluation, 47, 558-563.
[24]  Cawley, P. (1990) Low-Frequency NDT Techniques for the Detection of Disbonds and Delaminations. British Journal of Non-Destructive Testing, 32, 454-461.
[25]  Raju, P., Patel, J. and Vaidya, U. (1993) Characterization of Defects in Graphite Fiber Based Composite Structures Using the Acoustic Impact Technique (AIT). Journal of Testing Evaluation, 21, 377-395.
https://doi.org/10.1520/JTE11782J
[26]  Wheeler, A.S. (2018) Nondestructive Evaluation of Concrete Bridge Col-umns Rehabilitated with Fiber Reinforced Polymers Using Digital Tap Hammer and Infrared Thermography. West Vir-ginia University, Morgantown.
[27]  Joshi, R.M. (2018) Nondestructive Evaluation of FRP Composite Bridge Compo-nents Using Infrared Thermography and Digital Tap Testing. West Virginia University, Morgantown.
[28]  Kong, Q., Zhu, J., Ho, S.C.M., et al. (2018) Tapping and Listening: A New Approach to Bolt Looseness Monitoring. Smart Mate-rials and Structures, 27, 07LT02.
https://doi.org/10.1088/1361-665X/aac962
[29]  余焕伟. 基于高斯混合-隐马尔可夫模型的特种设备敲击检测[J]. 无损检测, 2021, 43(8): 14-20, 35.
[30]  杨靖, 吴杰, 张勇, 等. 活塞摩擦与敲击特性关键影响参数的优化研究[J]. 内燃机工程, 2021, 42(2): 95-103.
[31]  辛红伟, 安伟伦, 武英杰. 风电齿轮箱两级齿圈故障下振动信号幅值耦合调制建模[J]. 振动与冲击, 2021, 40(22): 221-233.
[32]  王铮, 李硕宁, 郭广平. 敲击检测技术在某雷达天线罩在役检测中的应用[J]. 无损检测, 2012, 34(6): 29-32.
[33]  陶鹏, 赵一中, 姚恩涛, 等. 基于敲击声振法的风机叶片脱层检测系统设计[J]. 测控技术, 2014, 33(4): 12-15.
[34]  梁钊, 邱晓梅, 王峰, 等. 基于能量特征的刹车片内部缺陷检测方法[J]. 组合机床与自动化加工技术, 2018(11): 89-91, 95.
[35]  宋一晨, 吕苗荣, 陆健. 钻井管柱振动信号系统仿真研究[J]. 石油机械, 2015(10): 34-41.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413