全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

像素级和目标级耦合的三维建筑物变化检测方法
Pixel-Level and Object-Level Combined 3D Building Change Detection Method

DOI: 10.12677/GST.2023.113024, PP. 216-224

Keywords: 机载激光点云,变化检测,违建发现,监督学习;Airborne LiDAR Data, Change Detection, Illegal Construction Discovery, Supervised Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

城市建筑物三维变化检测可以服务于城市精细化管理、基础数据库更新以及灾害评估。随着城市的快速发展,城市建筑物变化类型更加复杂,现有变化检测方法难以满足需求。本文提出了一种像素级与目标级耦合的三维建筑物变化检测方法。本方法首先将两时相机载激光点云格网化并利用对应格网高度差异定位像素级变化区域;然后利用机载激光点云生成建筑物目标;最后联合像素级和目标级的变化信息,基于监督学习的方法判断建筑物目标的变化类型。利用本文方法在机载激光点云数据集上实验并进行定量评价,召回率和准确率分别为90.3%和84.8%。实验结果表明提出的方法可以对复杂城市场景建筑物变化做出精准定位及类型判断,并可以应用于违建发现。
The 3D building change detection can be used for urban refinement management, basic database updating and disaster assessment. With the rapid development of cities, the change types of urban buildings have become more complex, and the existing change detection methods can hardly meet the requirements. In this paper, a pixel-level and object-level combined change detection method is proposed. Firstly, the height difference obtained by gridding the two temporal airborne point clouds is used to locate the pixel-level change area; then the building point cloud is used to generate building objects; finally, the change information at the pixel-level and object-level is combined and the change type is determined based on a supervised learning method. Using the proposed method to detect building changes in the airborne point cloud dataset, the recall and accuracy were 90.3% and 84.8% respectively. The experimental results show that the proposed method can accurately determine the building change types in complex urban areas and can be applied to illegal building detection.

References

[1]  Qin, R., Tian, J. and Reinartz, P. (2016) 3D Change Detection—Approaches and Applications. ISPRS Journal of Photo-grammetry and Remote Sensing, 122, 41-56.
https://doi.org/10.1016/j.isprsjprs.2016.09.013
[2]  杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展, 挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516.
[3]  Tian, J., Chaabouni-Chouayakh, H., Reinartz, P., et al. (2010) Automatic 3D Change Detection Based on Optical Satellite Stereo Imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 586-591.
[4]  Warth, G., Braun, A., B?dinger, C., et al. (2019) DSM-Based Identification of Changes in Highly Dy-namic Urban Agglomerations. European Journal of Remote Sensing, 52, 322-334.
https://doi.org/10.1080/22797254.2019.1604083
[5]  Sadeq, H.A. and Salih, D.M. (2020) The Use of Pixel-Based Algorithm for Automatic Change Detection of 3D Building from Aerial and Satellite Imagery: Erbil City as a Case Study. Zanco Journal of Pure and Applied Sciences, 32, 24-38.
https://doi.org/10.21271/zjpas.32.2.4
[6]  Chen, B., Chen, Z., Deng, L., et al. (2016) Building Change Detection with RGB-D Map Generated from UAV Images. Neurocomputing, 208, 350-364.
https://doi.org/10.1016/j.neucom.2015.11.118
[7]  Zhang, Z., Vosselman, G., Gerke, M., et al. (2019) Change Detection between Digital Surface Models from Airborne Laser Scanning and Dense Image Matching Using Convolu-tional Neural Networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 453-460.
https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019
[8]  Teo, T.A. and Shih, T.Y. (2013) Lidar-Based Change Detection and Change-Type Determination in Urban Areas. International Journal of Remote Sensing, 34, 968-981.
https://doi.org/10.1080/01431161.2012.714504
[9]  Pang, S., Hu, X., Wang, Z., et al. (2014) Object-Based Anal-ysis of Airborne LiDAR Data for Building Change Detection. Remote Sensing, 6, 10733-10749.
https://doi.org/10.3390/rs61110733
[10]  Pang, S., Hu, X., Cai, Z., et al. (2018) Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images. Sensors, 18, Article No. 966.
https://doi.org/10.3390/s18040966
[11]  Awrangjeb, M., Gilani, S.A.N. and Siddiqui, F.U. (2018) An Effective Data-Driven Method for 3-d Building Roof Reconstruction and Robust Change Detection. Remote Sensing, 10, Article No. 1512.
https://doi.org/10.3390/rs10101512
[12]  Du, S., Zhang, Y., Qin, R., et al. (2016) Building Change Detection Using Old Aerial Images and New LiDAR Data. Remote Sensing, 8, Article No. 1030.
https://doi.org/10.3390/rs8121030
[13]  He, L., Tan, Y., Liu, H., et al. (2018) UAV-Image-Based Illegal Activity Detection for Urban Subway Safety. 6th International Conference on Remote Sensing and Geoinformation of the Envi-ronment (RSCy2018), Vol. 10773, 611-617.
https://doi.org/10.1117/12.2323087
[14]  Varol, B., Y?lmaz, E.?., Maktav, D., et al. (2019) Detection of Illegal Constructions in Urban Cities: Comparing LIDAR Data and Stereo KOMPSAT-3 Images with Development Plans. Eu-ropean Journal of Remote Sensing, 52, 335-344.
https://doi.org/10.1080/22797254.2019.1604082
[15]  Ning, H., Huang, X., Li, Z., et al. (2020) Detecting New Building Construction in Urban Areas Based on Images of Small Unmanned Aerial System. Papers in Applied Geogra-phy, 6, 56-71.
https://doi.org/10.1080/23754931.2019.1707108
[16]  Zhang, W., Qi, J., Wan, P., et al. (2016) An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8, Article No. 501.
https://doi.org/10.3390/rs8060501
[17]  Dos Santos, R.C., Galo, M., Carrilho, A.C., et al. (2020) Automatic Build-ing Change Detection Using Multi-Temporal Airborne LiDAR Data. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, 22-26 March 2020, 54-59.
https://doi.org/10.1109/LAGIRS48042.2020.9165628
[18]  Stal, C., Tack, F., De Maeyer, P., et al. (2013) Air-borne Photogrammetry and Lidar for DSM Extraction and 3D Change Detection over an Urban Area—A Comparative Study. International Journal of Remote Sensing, 34, 1087-1110.
https://doi.org/10.1080/01431161.2012.717183

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413