全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于增强特征对齐循环结构的视频超分辨
Video Super-Resolution Based on Enhanced Feature Alignment with Recurrent Structure

DOI: 10.12677/JISP.2023.123022, PP. 226-235

Keywords: 视频超分辨,增强特征对齐,循环结构,多尺度上采样
Video Super-Resolution
, Enhanced Feature Alignment, Recurrent Structure, Mutil-Scale Upsampling

Full-Text   Cite this paper   Add to My Lib

Abstract:

不同于单张图像超分辨,视频超分辨需要时空联合考虑以处理连续的低分辨视频从而获取清晰的高分辨连续帧序列。当前,随着深度学习在视频超分辨领域的广泛应用,深度视频超分辨虽已取得显著效果,但仍然存在视频特征信息挖掘不足的问题。特别是,从时间维度看,充分提取连续的视频时空特征并有效融合这些特征来实现帧内细腻、帧间稳定的视频超分辨,仍然是当前视频超分辨率研究的主要问题。在这项工作中,本文提出了一个基于增强特征对齐循环结构的视频超分辨网络。首先,我们通过多分支的特征提取模块从不同的深度对输入的特征进行信息提取。其次,在增强特征对齐循环结构中,本文提出从当前帧的多个方向上同时融合相邻帧的信息,并使用相应方向上的光流信息进行辅助对齐。最后,本文提出在多个上采样尺度上对超分结果进行增强。实验结果表明,所提出的方法能获得细节清晰、帧序列稳定的视频超分辨效果,在定量的评估指标和定性的可视化结果等方面都超越了近些年的其他先进方法。
Unlike single image super-resolution (SISR), video super-resolution (VSR) needs to be considered spatially and temporally to process continuous low-resolution video to obtain clear high-resolution continuous frames. At present, with the extensive application of deep learning in the field of video super-resolution, deep video super-resolution has achieved remarkable results, but there is still a problem of insufficient video feature information mining. In particular, from the perspective of time dimension, it is still the main problem of current video super-resolution research to fully extract continuous video spatio-temporal features and effectively integrate these features to achieve video super-resolution that is exquisite within frames and stable between frames. In this work, an enhanced feature alignment recurrent structure for video super-resolution network is proposed. Firstly, the network extracts information from the input features from different depths through a multi-branch feature extraction module. Secondly, in the enhanced deformable feature alignment recurrent structure, we propose to fuse the information of adjacent frames from multiple directions of the current frame at the same time, and use the optical flow information in the corresponding directions to assist alignment. Finally, we propose to enhance the SR results on multiple upsampling scales. The experimental results show that the proposed method can achieve video super-resolution effect with clear details and stable frame sequence, which surpasses other advanced methods in recent years in terms of quantitative evaluation and qualitative visualization results.

References

[1]  陈艳, 金伟其, 王岭雪, 等. 基于视频序列的超分辨力视频图像处理软件在刑侦上的应用[J]. 警察技术, 2011(1): 24-26.
[2]  Schultz, R.R. and Stevenson, R.L. (1996) Extraction of High-Resolution Frames from Video Sequences. IEEE Transactions on Image Processing, 5, 996-1011.
https://doi.org/10.1109/83.503915
[3]  Liu, C. and Sun, D. (2013) On Bayesian Adaptive Video Super Resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 346-360.
https://doi.org/10.1109/TPAMI.2013.127
[4]  Ma, Z., Liao, R., Tao, X., et al. (2015) Handling Motion Blur in Multi-Frame Super-Resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 5224-5232.
[5]  李金航, 肖亮, 韦志辉. 基于时空相关性的视频超分辨率重建算法[J]. 计算机与数字工程, 2020, 48(4): 946-951.
[6]  Caballero, J., Ledig, C., Aitken, A., et al. (2017) Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 2848-2857.
https://doi.org/10.1109/CVPR.2017.304
[7]  Tian, Y.P., Zhang, Y.L., Fu, Y. and Xu, C.L. (2020) TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 13-19 June 2020, 3357-3366.
https://doi.org/10.1109/CVPR42600.2020.00342
[8]  Wang, X.T., Chan, K.C.K., Yu, K., Dong, C. and Loy, C.C. (2019) EDVR: Video Restoration with Enhanced Deformable Convolutional Networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, 16-17 June 2019, 1954-1963.
https://doi.org/10.1109/CVPRW.2019.00247
[9]  刘佳, 安鹤男, 李蔚, 等. 基于帧循环网络的视频超分辨率技术[J]. 电子技术应用, 2020, 46(9): 43-46.
[10]  Huang, Y., Wang, W. and Wang, L. (2017) Video Super-Resolution via Bidirectional Recurrent Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1015-1028.
https://doi.org/10.1109/TPAMI.2017.2701380
[11]  Kappeler, A., Yoo, S., Dai, Q.Q. and Katsaggelos, A.K. (2016) Video Super-Resolution with Convolutional Neural Networks. IEEE Transactions on Computational Imaging, 2, 109-122.
https://doi.org/10.1109/TCI.2016.2532323
[12]  Xue, T., Chen, B., Wu, J., et al. (2019) Video Enhancement with Task-Oriented Flow. International Journal of Computer Vision, 127, 1106-1125.
https://doi.org/10.1007/s11263-018-01144-2
[13]  吴昊, 赖惠成, 钱绪泽, 等. 基于光流残差的视频超分辨率重建算法[J]. 计算机工程与应用, 2022, 58(15): 220-228.
[14]  储岳中, 乔雨楠. 多注意力结合光流的视频超分辨方法[J]. 重庆工商大学学报(自然科学版), 2022, 39(4): 1-8.
[15]  Zhu, X., Li, Z., Zhang, X.Y., et al. (2019) Residual Invertible Spatio-Temporal Network for Video super-Resolution. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 5981-5988.
https://doi.org/10.1609/aaai.v33i01.33015981
[16]  Li, W., Tao, X., Guo, T., et al. (2020) MuCAN: Multi-Correspondence Aggregation Network for Video Super-Resolution. In: Vedaldi, A., Bischof, H., Brox, T. and Frahm, J.M., Eds., ECCV 2020: Computer Vision—ECCV 2020, Springer, Cham, 335-351.
https://doi.org/10.1007/978-3-030-58607-2_20
[17]  刘翠微, 丁彩胤, 李侃, 等. 基于时空注意力的双分支视频超分辨率网络[J]. 沈阳航空航天大学学报, 2022, 39(1): 45-53.
[18]  Chan, K.C.K., Wang, X.T., Yu, K., Dong, C. and Loy, C.C. (2021) BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 20-25 June 2021, 4945-4954.
https://doi.org/10.1109/CVPR46437.2021.00491
[19]  Cao, J.Z., Li, Y.W., Zhang, K., et al. (2021) Video Super-Resolution Transformer. arXiv: 2106.06847.
[20]  Ranjan, A. and Black, M.J. (2017) Optical Flow Estimation Using a Spatial Pyramid Network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 2720-2729.
https://doi.org/10.1109/CVPR.2017.291
[21]  Dai, J.F., Qi, H.Z., Xiong, Y.W., et al. (2017) Deformable Convolutional Networks. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 764-773.
https://doi.org/10.1109/ICCV.2017.89
[22]  Shi, W., Caballero, J., Huszár, F., et al. (2016) Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 1874-1883.
https://doi.org/10.1109/CVPR.2016.207
[23]  Charbonnier, P., Blanc-Feraud, L., Aubert, G. and Barlaud, M. (2019) Two Deterministic Half-Quadratic Regularization Algorithms for Computed Imaging. Proceedings of 1st International Conference on Image Processing, Austin, 13-16 November 1994, 168-172.
[24]  Nah, S., Baik, S., Hong, S., et al. (2019) Ntire 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, 16-17 June 2019, 1996-2005.
https://doi.org/10.1109/CVPRW.2019.00251
[25]  Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv: 1412.6980.
[26]  Loshchilov, I. and Hutter, F. (2016) SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv: 1608.03983.
[27]  Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13, 600-612.
https://doi.org/10.1109/TIP.2003.819861
[28]  Jo, Y., Oh, S.W., Kang, J. and Kim, S.J. (2018) Deep Video Super-Resolution Network Using Dynamic Upsampling Filters without Explicit Motion Compensation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 3224-3232.
https://doi.org/10.1109/CVPR.2018.00340
[29]  Yi, P., Wang, Z., Jiang, K., Jiang, J.J. and Ma, J.Y. (2019) Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, 27 October-2 November 2019, 3106-3115.
https://doi.org/10.1109/ICCV.2019.00320

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413