全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电催化氧还原制备H2O2方法及应用进展
Progress on Preparation and Application of H2O2 Produced by Electrocatalytic Oxygen Reduction

DOI: 10.12677/HJCET.2023.134032, PP. 283-295

Keywords: H2O2,应用,氧还原,机理,影响因素,催化剂
Hydrogen Peroxide
, Application, Oxygen Reduction, Mechanism, Influencing Factors, Catalyzer

Full-Text   Cite this paper   Add to My Lib

Abstract:

H2O2因其氧化性及环境友好性而广泛应用于生化消毒领域,在纺织、造纸、水处理等行业中需求也逐年增加。蒽醌法是目前工业生产H2O2的主要方法,但该法涉及多步反应,过程溶液处理难,电解法、异丙醇氧化法、氢氧直接合成法等也存在能耗高和安全系数低等问题。电催化氧还原制备法是一种便捷、经济和环境友好的方式,具有反应条件简单、生产过程清洁、反应过程安全等优点。本文阐述了电催化氧还原制备过氧化氢的基本原理,结合近年来的研究成果归纳了该方法制备H2O2的主要技术进展,分析了影响制备效率的关键影响因素,展望了利用氧还原法快速原位制备H2O2并应用于洗消领域的新发展方向。
Hydrogen peroxide is widely used in the field of biochemical disinfection due to its oxidizing and environmentally friendly properties, and its demand in industries such as textiles, paper making, and water treatment is also increasing year by year. The anthraquinone method is currently the main method for industrial production of hydrogen peroxide, but it involves multi-step reactions and is difficult to treat the process solution. Electrolysis, isopropanol oxidation, and direct synthesis of hydrogen and oxygen also have high energy consumption and low safety factors. The electrocatalytic oxygen reduction preparation method is a convenient, economical, and environmentally friendly method, which has the advantages of simple reaction conditions, clean production process, and safe reaction process. This article elaborates on the basic principle of electrocatalytic oxygen reduction to prepare hydrogen peroxide, summarizes the main technological progress of this method in preparing hydrogen peroxide, analyzes the key influencing factors on preparation efficiency, and looks forward to the new development direction of using oxygen reduction method to quickly prepare hydrogen peroxide in situ and apply it in the field of washing and disinfection.

References

[1]  Yang, S., Verdaguer-Casadevall, A., Arnarson, L., et al. (2018) Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catalysis, 8, 4064-4081.
https://doi.org/10.1021/acscatal.8b00217
[2]  Jiang, Y.Y., Ni, P.J., Chen, C.X., et al. (2018) Selective Elec-trochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, Article ID: 1801909.
https://doi.org/10.1002/aenm.201801909
[3]  Yamanaka, I. and Murayama, T. (2008) Neutral H2O2 Synthesis by Electrolysis of Water and O2. Angewandte Chemie, 47, 1900-1902.
https://doi.org/10.1002/anie.200704431
[4]  Xia, C., Xia, Y., Zhu, P., et al. (2019) Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte. Science, 366, 226-231.
https://doi.org/10.1126/science.aay1844
[5]  Xia, C., Back, S., Ringe, S., et al. (2020) Confined Local Oxygen gas Promotes Electrochemical Water Oxidation to Hydrogen Peroxide. Nature Catalysis, 3, 125-134.
https://doi.org/10.1038/s41929-019-0402-8
[6]  Chen, S., Chen, Z., Siahrostami, S., et al. (2018) Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 140, 7851-7859.
https://doi.org/10.1021/jacs.8b02798
[7]  Chang, Q., Zhang, P., Mostaghimi, A.H.B., et al. (2020) Promoting H2O2 Production via 2-Electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon. Nature Communications, 11, Article No. 2178.
https://doi.org/10.1038/s41467-020-15843-3
[8]  Siahrostami, S., Verdaguer-Casadeval, A., Karamad, M., et al. (2013) Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nature Materials, 12, 1137-1143.
https://doi.org/10.1038/nmat3795
[9]  Zheng, Z.K., Yun, H.N., Wang, D.W., et al. (2016) Epi-taxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2O2 Production. Advanced Materials, 28, 9949-9955.
https://doi.org/10.1002/adma.201603662
[10]  Zou, L., Wei, Y., Hou, C., et al. (2021) Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications. Small, 17, Article ID: 2004809.
https://doi.org/10.1002/smll.202004809
[11]  Shen, R., Chen, W., Peng, Q., et al. (2019) High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem, 5, 2099-2110.
https://doi.org/10.1016/j.chempr.2019.04.024
[12]  Jung, E., Shin, H., Lee, B.H., et al. (2020) Atomic-Level Tuning of Co-N-C Catalyst for High-Performance Electrochemical H2O2 Production. Nature Materials, 19, 436-442.
https://doi.org/10.1038/s41563-019-0571-5
[13]  Li, B.Q., Zhao, C.X., Liu, J.N., et al. (2019) Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx-C Sites and Oxygen Functional Groups in No-ble-Metal-Free Electrocatalysts. Advanced Materials, 31, Article ID: 1808173.
https://doi.org/10.1002/adma.201808173
[14]  Jiang, K., Back, S., Akey, A.J., et al. (2019) Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nature Communications, 10, Article No. 3997.
https://doi.org/10.1038/s41467-019-11992-2
[15]  Oloman, C. and Watkinson, A.P. (1979) Hydrogen Peroxide Production in Trickle-Bed Electrochemical Reactors. Journal of Applied Electrochemistry, 9, 117-123.
https://doi.org/10.1007/BF00620593
[16]  Sun, Y., Sinev, I., Ju, W., et al. (2018) Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 8, 2844-2856.
https://doi.org/10.1021/acscatal.7b03464
[17]  Zhao, K., Yan, S., Xie, Q., et al. (2018) Enhanced H2O2 Pro-duction by Selective Electrochemical Reduction of O2 on Fluorine-Doped Hierarchically Porous Carbon. Journal of Catalysis, 357, 118-126.
https://doi.org/10.1016/j.jcat.2017.11.008
[18]  Lu, Z., Chen, G., Siahrostami, S., et al. (2018) High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nature Catalysis, 1, 156-162.
https://doi.org/10.1038/s41929-017-0017-x
[19]  Zhu, J., Xiao, X., Zheng, K., et al. (2019) KOH-Treated Reduced Graphene Oxide: 100% Selectivity for H2O2 Electroproduction. Carbon, 153, 6-11.
https://doi.org/10.1016/j.carbon.2019.07.009
[20]  Park, J., Nabae, Y., Hayakawa, T., et al. (2014) Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catalysis, 4, 3749-3754.
https://doi.org/10.1021/cs5008206
[21]  Liu, Y., Quan, X., Fan, X., et al. (2015) High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. Angewandte Chemie, 127, 6941-6945.
https://doi.org/10.1002/ange.201502396
[22]  Jing, L., Tang, C., Tian, Q., et al. (2021) Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Elec-trochemical H2O2 Production. ACS Applied Materials & Interfaces, 13, 39763-39771.
https://doi.org/10.1021/acsami.1c11765
[23]  Dong, K., Liang, J. and Wang, Y. (2021) Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. Angewandte Chemie, 60, 10583-10587.
https://doi.org/10.1002/anie.202101880
[24]  Choi, C.H., Kim, M., Kwon, H.C., et al. (2016) Tuning Selectivity of Electrochemical Reactions by Atomically Dispersed Platinum Catalyst. Nature Communications, 7, Article No. 10922.
https://doi.org/10.1038/ncomms10922
[25]  Jirkovsky, J.S., Panas, I., Ahlberg, E., et al. (2011) Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H2O2 Production.. Journal of the American Chemical Society, 133, 19432-19441.
https://doi.org/10.1021/ja206477z
[26]  Yang, S., Tak, Y.J., Kim, J., et al. (2017) Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catalysis, 7, 1301-1307.
https://doi.org/10.1021/acscatal.6b02899
[27]  Tang, C., Jiao, Y., Shi, B., et al. (2020) Coordina-tion Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angewandte Chemie International Edition, 59, 9171-9176.
[28]  Wang, Y., Shi, R., Shang, L., et al. (2020) High Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Ni Single Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Hase Flow Cell. Angewandte Chemie, 59, 13057-13062.
https://doi.org/10.1002/anie.202004841
[29]  Gao, J., Yang, H.B., Huang, X., et al. (2020) Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem, 6, 658-674.
https://doi.org/10.1016/j.chempr.2019.12.008
[30]  Zhang, J., Zhang, G., Jin, S., et al. (2020) Gra-phitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon, 163, 154-161.
https://doi.org/10.1016/j.carbon.2020.02.084
[31]  Chen, G., Liu, J., Li, Q., et al. (2019) A Direct H2O2 Production Based on Hollow Porous Carbon Sphere-Sulfur Nanocrystal Composites by Confinement Effect as Oxygen Reduction Electrocatalysts. Nano Research, 12, 2614-2622.
https://doi.org/10.1007/s12274-019-2496-3
[32]  Kim, H.W., Ross, M.B., Kornienko, N., et al. (2018) Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-Based Oxygen Reduction Electrocatalysts. Nature Catalysis, 1, 282-290.
https://doi.org/10.1038/s41929-018-0044-2
[33]  Han, L., Sun, Y., Li, S., et al. (2019) In-Plane Carbon Lat-tice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 9, 1283-1288.
https://doi.org/10.1021/acscatal.8b03734
[34]  Sa, Y.J., Kim, J.H. and Joo, S.H. (2019) Active Edge Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Produc-tion. Angewandte Chemie International Edition, 58, 1100-1105.
https://doi.org/10.1002/anie.201812435
[35]  Iglesias, D., Giulliani, A., Melchionna, M., et al. (2018) N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem, 4, 106-123.
https://doi.org/10.1016/j.chempr.2017.10.013
[36]  张磊, 习海玲, 王琦, 等. “过氧化物/钼酸盐”体系对芥子气及其模拟剂消毒反应动力学与机理研究[D]: [硕士毕业论文]. 北京: 防化研究院, 2011: 1-62.
[37]  齐丽红. 固体二元过氧酸消毒剂的研究[D]: [博士毕业论文]. 北京: 防化学院, 2010: 1-120.
[38]  肖博仁. 过氧亚酰胺活化生成机制及消毒应用[D]: [硕士毕业论文]. 北京: 防化学院, 2021: 1-125.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413