全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二氧化碳还原光催化材料的研究进展
Research Progress of Carbon Dioxide Reduction Photocatalytic Materials

DOI: 10.12677/HJCET.2023.134033, PP. 296-303

Keywords: 光催化,CO2还原,光催化材料
Photocatalytic
, CO2 Reduction, Photocatalytic Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

以太阳能驱动光催化作为一种高级氧化和无选择催化工艺能够将CO2还原为有用化学品,在环境保护、实现能源绿色可持续发展方面具有独特优势。本文首先解释了光催化还原二氧化碳的原理,在此基础上介绍了常用光催化还原二氧化碳的材料,最后总结展望了CO2光催化还原领域的研究前景和发展趋势。
As an advanced oxidation and selective catalytic process driven by solar energy, photocatalysis can reduce CO2 to useful organic chemicals, which has unique advantages in environmental protection and green and sustainable development of energy. The principle of photocatalytic reduction of carbon dioxide is explained in this review. Then photocatalytic materials for reduction of carbon dioxide were summarizd.

References

[1]  Inoue, T., Fujishima, A., Konishi, S. and Honda, K. (1979) Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 277, 637-638.
https://doi.org/10.1038/277637a0
[2]  孙登荣, 李朝晖. 金属有机框架材料(MOFs)在光催化有机合成中的应用[J]. 中国材料进展, 2017, 36(10): 756-764.
[3]  王子一. 金属卟啉高效助催化剂提升半导体TiO2光催化还原CO2性能的研究[D]: [硕士学位论文]. 天津: 天津大学, 2020.
[4]  肖娟定, 李丹丹, 江海龙. 金属有机框架材料在光催化中的应用[J]. 中国科学:化学, 2018, 48(9): 1058-1075.
[5]  Wang, D.K., Huang, R.K., Liu, W.J., Sun, D.G. and Li, Z.H. (2014) Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catalysis, 4, 4254-4260.
https://doi.org/10.1021/cs501169t
[6]  Shi, L.,Wang, T., Zhang, H.B., Chang, K. and Ye, J.H. (2015) Elec-trostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO2 Reduction. Advanced Functional Materials, 25, 5360-5367.
https://doi.org/10.1002/adfm.201502253
[7]  Cardoso, J., Stulp, S., Brito, J.F., et al. (2018) MOFs Based on ZIF-8 Deposited on TiO2 Nanotubes Increase the Surface Adsorption of CO2 and Its Photoelectrocatalytic Reduction to Alcohols in Aqueous Media. Applied Catalysis B: Environmental, 225, 563-573.
https://doi.org/10.1016/j.apcatb.2017.12.013
[8]  Ryu, U.J., Kim, S.J., Lim, H.K., et al. (2017) Synergistic Interaction of Re Complex and Amine Functionalized Multiple Ligands in Metal-Organic Frameworks for Conver-sion of Carbon Dioxide. Scientific Reports, 7, Article No. 612.
https://doi.org/10.1038/s41598-017-00574-1
[9]  Qin, J., Wang, S. and Wang, X. (2017) Visible-Light Re-duction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-Catalyst. Applied Ca-talysis B: Environmental, 209, 476-482.
https://doi.org/10.1016/j.apcatb.2017.03.018
[10]  Dong, G. and Zhang, L. (2011) Porous Structure Dependent Photoreactivity of Graphitic Carbon Nitride under Visible Light. Journal of Materials Chemistry, 22, 1160-1166.
https://doi.org/10.1039/C1JM14312C
[11]  李阳. 基于g-C3N4复合光催化剂的制备及高效光催化CO2还原[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2021.
[12]  张麒, 殷金越, 田志远, 等. C3N4/BiVO4/Cu2O复合材料用于纯水中CO2光还原为甲醇[J]. 分子科学学报, 2021, 37(4): 335-342.
[13]  Zhang, R.Y., Huang, Z., Li, C.J., Zuo, Y.S. and Zhou, Y. (2019) Monolithic g-C3N4/Reduced Graphene Oxide Aerogel with in situ Embedding of Pd Nanoparticles for Hydrogenation of CO2 to CH4. Applied Surface Science, 475, 953-960.
https://doi.org/10.1016/j.apsusc.2019.01.050
[14]  Wang, K., Fu, J.L. and Zheng, Y. (2019) Insights into Photocatalytic CO2 Reduction on C3N4: Strategy of Simultaneous B, K Co-Doping and Enhancement by N Vacancies. Applied Catalysis B: Environmental, 254, 270-282.
https://doi.org/10.1016/j.apcatb.2019.05.002
[15]  Bhosale, R., Jain, S., Vinod, C.P., Kumar, S. and Ogale, S. (2019) Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Eehanced and Selective Photocatalytic CO2 Reduction under Visible Light. ACS Applied Materials & Interfaces, 11, 6174-6183.
[16]  Kuriki, R., Ishitani, O. and Maeda, K. (2016) Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. ACS Applied Materials & Interfaces, 8, 6011-6018.
https://doi.org/10.1021/acsami.5b11836
[17]  Zhao, X., Fan, Y., Zhang, W., et al. (2020) Nanoengineering Construction of Cu2O Nanowire Arrays Encapsulated with g-C3N4 as 3D Spatial Reticulation All-Solid-State Direct Zscheme Photocatalysts for Photocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 10, 6367-6376.
https://doi.org/10.1021/acscatal.0c01033
[18]  Fu, J., Zhu, B., Jiang, C., et al. (2017) Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity. Small, 13, Article ID: 1603938.
https://doi.org/10.1002/smll.201603938
[19]  Sun, Z., Yang, Z., Liu, H., Wang, H.Q. and Wu, Z.B. (2014) Visible-Light CO2 Photocatalytic Reduction Performance of Ball-Flower-Like Bi2WO6 Synthesized without Organic Precursor: Effect of Post-Calcination and Water Vapor. Applied Surface Science, 315, 360-367.
https://doi.org/10.1016/j.apsusc.2014.07.153
[20]  任广敏. Bi2MO6(M = W, Mo)/ACSs的制备及其光催化CO2还原性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2020.
[21]  候婉君, 肖姗姗, 陈悦, 周香港, 王立艳, 盖广清. Bi2WO6光催化剂的研究进展[J]. 建材技术与应用, 2021(4): 28-31.
[22]  Cheng, H., Huang, B., Liu, Y., et al. (2012) An Anion Exchange Approach to Bi2WO6 Hollow Microspheres with Efficient Visible Light Photocatalytic Reduction of CO2 to Methanol. Chemical Communications, 48, 9729-9731.
https://doi.org/10.1039/c2cc35289c
[23]  Ye, L.Q., Jin, X.L., Liu, C., et al. (2016) Thickness-Ultrathin and Bismuth-Rich Strategies for BiOBr to Enhance Photoreduction of CO2 into Solar Fuels. Applied Catalysis B: Envi-ronmental, 187, 281-290.
https://doi.org/10.1016/j.apcatb.2016.01.044
[24]  Huang, H., Tu, S., Zeng, C., et al. (2017) Macroscopic Polarization Enhancement Promoting Photo-and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. Angewandte Chemie International Edition, 56, 11860-11864.
https://doi.org/10.1002/anie.201706549
[25]  Yu, S.X., Zhang, Y.H., Dong, F., et al. (2018) Readily Achieving Concentration-Tunable Oxygen Vacancies in Bi2O2CO3: Triple-Functional Role for Efficient Visible-Light Photo-catalytic Redox Performance. Applied Catalysis B: Environmental, 226, 441-450.
https://doi.org/10.1016/j.apcatb.2017.12.074
[26]  Chen, F., Huang, H.W., Ye, L.Q., et al. (2018) Thick-ness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction. Advanced Functional Materials, 28, Article ID: 1804284.
https://doi.org/10.1002/adfm.201804284
[27]  Li, J., Cai, L.J., Shang, J., Yu, Y. and Zhang, L.Z. (2016) Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 28, 4059-4064.
https://doi.org/10.1002/adma.201600301
[28]  Liu, Y.Y., Huang, B.B., Dai, Y., et al. (2009) Se-lective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with BiVO4 Photocatalyst. Catalysis Communications, 11, 210-213.
https://doi.org/10.1016/j.catcom.2009.10.010
[29]  Yamashita, H., Kamada, N., He, H., et a1. (1994) Reduc-tion of CO2 with H2O on TiO2 (100) and TiO2 (110) Single Crystals under UV-Irradiation. Chemistry Letters, 23, 855-858.
https://doi.org/10.1246/cl.1994.855
[30]  许民. 碳载二氧化钛复合光催化材料的制备及其能源转换应用[D]: [硕士学位论文]. 武汉: 华中科技大学, 2015.
[31]  Ishitani, O., Inoue, C., Suzuki, Y. and Ibusuki, T. (1993) Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by All Aqueous Suspension of Metal-deposited TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 72, 269-271.
https://doi.org/10.1016/1010-6030(93)80023-3
[32]  Hirano, K., Inoue, K. and Yatsu, T. (1992) Photocata-lysed Reduction CO2 in Aqueous TiO2 Suspension Mixed with Copper Powder. Journal of Photochemistry and Photobiology A: Chemistry, 64, 255-258.
https://doi.org/10.1016/1010-6030(92)85112-8
[33]  Anop, M., Yamashita, H., Ichihashi, Y. and Ehara, S. (1995) Photocatalytic Reduction of CO2 with H2O on Various Titanium Oxide Catalysts. Journal of Electroanalytical Chemistry, 396, 21-26.
https://doi.org/10.1016/0022-0728(95)04141-A
[34]  Feng, X., Sloppy, J.D., LaTempa, T.J., et al. (2011) Synthesis and Deposition of Ultrafine Pt Nanoparticles within High Aspect Ratio TiO2 Nanotube Arrays: Application to the Photocatalytic Reduction of Carbon Dioxide. Journal of Materials Chemistry, 21, 13429-13433.
https://doi.org/10.1039/c1jm12717a
[35]  Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I. and Grela, M.A. (2017) Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photo-corrosion. Applied Catalysis B: Environmental, 217, 485-493.
https://doi.org/10.1016/j.apcatb.2017.05.058
[36]  Li, H.H., Li, C.X., Han, L.J., Li, C.S. and Zhang, S.J. (2016) Photocatalytic Reduction of CO2 with H2O on CuO/TiO2 Catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 420-426.
https://doi.org/10.1080/15567036.2011.598910
[37]  Yan, Y.B., Yu, Y.L., Cao, C., et al. (2016) Enhanced Photocatalytic Activity for TiO2-Cu/C with Regulation and Matching of Energy Levels by Carbon and Copper for Photoreduction of CO2 into CH4. CrystEngComm, 18, 2956- 2964.
https://doi.org/10.1039/C6CE00117C
[38]  Truong, Q.D., Liu, J.Y., Chung, C.C. and Ling, Y.C. (2012) Pho-tocatalytic Reduction of CO2 on FeTiO3/TiO2 Photocatalyst. Catalysis Communications, 19, 85-89.
https://doi.org/10.1016/j.catcom.2011.12.025
[39]  Liu, J.H., Niu, Y.H., He, X., Qi, J.Y. and Li, X. (2016) Photocatalytic Reduction of CO2 Using TiO2-Graphene Nanocomposites. Journal of Nanomaterials, 2016, Article ID: 6012896.
https://doi.org/10.1155/2016/6012896
[40]  王育文. Bi2S3 QDs和碳量子点修饰{001}TiO2及其光催化还原CO2为甲醇的研究[D]: [硕士学位论文]. 天津: 天津大学, 2016.
[41]  Liang, Y.T., Vijayan, B.K., Lyandres, O., Gray, K.A. and Hersam, M.C. (2012) Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. The Journal of Physical Chemistry Letters, 3, 1760-1765.
https://doi.org/10.1021/jz300491s
[42]  He, Z.Q., Tang, J.T., Shen, J., Chen, J.M. and Song, S. (2016) Enhancement of Photocatalytic Reduction of CO2 to CH4 over TiO2 Nanosheets by Mod-ifying with Sulfuric Acid. Applied Surface Science, 364, 416-427.
https://doi.org/10.1016/j.apsusc.2015.12.163

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413