全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Depth Profile Study of Electroless Deposited Sb2S3 Thin Films Using XPS for Photovoltaic Applications

DOI: 10.4236/msa.2023.147025, PP. 397-406

Keywords: Sb2S3, Depth Profiling, X-Ray Photoelectron Spectroscopy, Thin Film, Electroless

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sb2S3 has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The stoichiometry and composition of electroless Sb2S3 thin films were analyzed using XPS depth profile studies. The surface layers were found nearly stoichiometric. On the other hand, the inner layer was rich in antimony composition making it more conductive electrically.

References

[1]  Wang, X.M., Tang, R.F., Wu, C.Y., Zhu, C.F. and Chen, T. (2018) Development of Antimony Sulfide—Selenide Sb2(S, Se)3-Based Solar Cells. Journal of Energy Chemistry, 27, 713-721.
https://doi.org/10.1016/j.jechem.2017.09.031
[2]  Hossain, M.K., Raihan, G.A., Akbar, M.A., Rubel, M.H.K., Ahmed, M.H., Khan, M.I., Hossain, S., Sen, S.K., Jalal, M.I.E. and El-Denglawey, A. (2022) Current Applications and Future Potential of Rare Earth Oxides in Sustainable Nuclear, rAdiation, and Energy Devices: A Review. ACS Applied Electronic Materials, 4, 3327-3353.
https://doi.org/10.1021/acsaelm.2c00069
[3]  Green, M.A. (2019) How Did Solar Cells Get so Cheap? Joule, 3, 631-633.
https://doi.org/10.1016/j.joule.2019.02.010
[4]  Hossain, M.K., Pervez, M.F., Tayyaba, S., Uddin, M.J., Mortuza, A.A., Mia, M.N.H., Manir, M.S., Karim, M.R. and Khan, M.A. (2017) Efficiency Enhancement of Natural Dye Sensitized Solar Cell by Optimizing Electrode Fabrication Parameters. Materials Science, 35, 816-823.
https://doi.org/10.1515/msp-2017-0086
[5]  Hossain, M.K., Pervez, M.F., Mia, M.N.H., Mortuza, A.A., Rahaman, M.S., Karim, M.R., Islam, J.M.M., Ahmed, F. and Khan, M.A. (2017) Effect of Dye Extracting Solvents and Sensitization Time on Photovoltaic Performance of Natural Dye Sensitized Solar Cells. Results in Physics, 7, 1516-1523.
https://doi.org/10.1016/j.rinp.2017.04.011
[6]  Tong, J., Song, Z., Kim, D.H., Chen, X., Chen, C., Palmstrom, A.F., Ndione, P.F., Reese, M.O., Dunfield, S.P., Reid, O.G., Liu, J., Zhang, F., Harvey, S.P., Li, Z., Christensen, S.T., Teeter, G., Zhao, D., Al-Jassim, M.M., Van Hest, M.F.A.M., Beard, M.C., Shaheen, S.E., Berry, J.J., Yan, Y. and Zhu, K. (2019) Carrier Lifetimes of >1 μs in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells. Science, 364, 475-479.
https://doi.org/10.1126/science.aav7911
[7]  Zhang, H., Xiao, J., Shi, J., Su, H., Luo, Y., Li, D., Wu, H., Cheng, Y.B. and Meng, O. (2018) Self-Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 28, Article ID: 1802985.
https://doi.org/10.1002/adfm.201802985
[8]  Wu, W.Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A. and Huang, J. (2018) Molecular Doping Enabled Scalable Blading of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells. Nature Communications, 9, Article No. 1625.
https://doi.org/10.1038/s41467-018-04028-8
[9]  Burst, J.M., Duenow, J.N., Albin, D.S., Colegrove, E., Reese, M.O., Aguiar, J.A., Jiang, C.S., Patel, M.K., Al-Jassim, M.M., Kuciauskas, D., Swain, S., Ablekim, T., Lynn, K.G. and Metzger, W.K. (2016) CdTe Solar Cells with Open-Circuit Voltage Breaking the 1 V Barrier. Nature Energy, 1, Article No. 16015.
https://doi.org/10.1038/nenergy.2016.15
[10]  Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W. and Powalla, M. (2011) New World Record Efficiency for Cu(In, Ga)Se2 Thin-Film Solar Cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19, 894-897.
https://doi.org/10.1002/pip.1078
[11]  Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials, 4, Article ID: 1301465.
https://doi.org/10.1002/aenm.201301465
[12]  Zimmermann, E., Pfadler, T., Kalb, J., Dorman, J.A., Sommer, D., Hahn, G., Weickert, J. and Schmidt-Mende, L. (2015) Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells. Advanced Science, 2, Article ID: 1500059.
https://doi.org/10.1002/advs.201500059
[13]  Wen, X., Chen, C., Lu, S., Li, K., Kondrotas, R., Zhao, Y., Chen, W., Gao, L., Wang, C., Zhang, J., Niu, G. and Tang, J. (2018) Vapor Transport Deposition of Antimony Selenide Thin Film Solar Cells with 7.6% Efficiency. Nature Communications, 9, Article No. 2179.
https://doi.org/10.1038/s41467-018-04634-6
[14]  Ghosh, C. and Varma, B.P. (1979) Optical Properties of Amorphous and Crystalline Sb2S3 Thin Films. Thin Solid Films, 60, 61-65.
https://doi.org/10.1016/0040-6090(79)90347-X
[15]  Versavel, M.Y. and Haber, J.A. (2007) Structural and Optical Properties of Amorphous and Crystalline Antimony Sulfide Thin-Films. Thin Solid Films, 515, 7171-7176.
https://doi.org/10.1016/j.tsf.2007.03.043
[16]  Boix, P.P., Lee, Y.H., Fabregat-Santiago, F., Im, S.H., Mora-Sero, I., Bisquert, J. and Seok, S.I. (2012) From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells. ACS Nano, 6, 873-880.
https://doi.org/10.1021/nn204382k
[17]  Lee, Y.H., Heo, J.H., Im, S.H., Kim, H.J., Lim, C.S., Ahn T.K. and Seok, S.I. (2013) Improvement of Nonlinear Response for the Power Conversion Efficiency with Light Intensities in Cobalt Complex Electrolyte System. Chemical Physics Letters, 573, 63-69.
https://doi.org/10.1016/j.cplett.2013.04.047
[18]  Shuai, X. and Shen, W. (2012) A Facile Chemical Conversion Synthesis of Sb2S3 Nanotubes and the Visible Light-Driven Photocatalytic Activities. Nanoscale Research Letters, 7, Article No. 199.
https://doi.org/10.1186/1556-276X-7-199
[19]  Ibuke, S. and Yochimatsu, S. (1955) Photoconductivity of Stibnite (Sb2S3). Journal of the Physical Society of Japan, 10, 549-554.
https://doi.org/10.1143/JPSJ.10.549
[20]  Li, K., Huang, F. and Lin, X. (2008) Pristine Narrow-Bandgap Sb2S3 as a High-Efficiency Visible-Light Responsive Photocatalyst. Scripta Materialia, 58, 834-837.
https://doi.org/10.1016/j.scriptamat.2007.12.033
[21]  Arivuoli, D., Gnanam, F. and Ramasamy, P. (1988) Growth and Microhardness Studies of Chalcogneides of Arsenic, Antimony and Bismuth. Journal of Materials Science Letters, 7, 711-713.
https://doi.org/10.1007/BF00722076
[22]  Savadogo, O. and Mandal, K. (1992) Studies on New Chemically Deposited Photoconducting Antimony Trisulphide Thin Films. Solar Energy Materials and Solar Cells, 26, 117-136.
https://doi.org/10.1016/0927-0248(92)90131-8
[23]  Han, Q., Chen, L., Wang, M., Yang, X., Lu, L. and Wang, X. (2010) Low-Temperature Synthesis of Uniform Sb2S3 Nanorods and Its Visible-Light-Driven Photocatalytic Activities. Materials Science and Engineering: B, 166, 118-121.
https://doi.org/10.1016/j.mseb.2009.10.010
[24]  Sun, M., Li, D.Z., Li, W.J., Chen, Y.B., Chen, Z.X., He, Y.H. and Fu, X.Z. (2008) A New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible Light Irradiation. The Journal of Physical Chemistry C, 112, 18076-18081.
https://doi.org/10.1021/jp806496d
[25]  Cao, X., Gu, L., Zhuge, L., Gao, W., Wang, W. and Wu, S. (2006) Template-Free Preparation of Hollow Sb2S3 Microspheres as Supports for Ag Nanoparticles and Photocatalytic Properties of the Constructed Metal—Semiconductor Nanostructures. Advanced Functional Materials, 16, 896-902.
https://doi.org/10.1002/adfm.200500422
[26]  Zawawi, I., Moez, A., Terra, F. and Mounir, M. (1998) Substrate Temperature Effect on the Optical and Electrical Properties of Antimony Trisulfide Thin Films. Thin Solid Films, 324, 300-304.
https://doi.org/10.1016/S0040-6090(98)00350-2
[27]  Mathew, N., Oommen, R., Rajalakshmi, U. and Sanjeeviraja, C. (2011) Investigations of the Se Doped Sb2S3 Thin Films. Chalcogenide Letters, 8, 441-446.
[28]  Messina, S., Nair, M. and Nair, P. (2007) Antimony Sulfide Thin Films in Chemically Deposited Thin Film Photovoltaic Cells. Thin Solid Films, 515, 5777-5782.
https://doi.org/10.1016/j.tsf.2006.12.155
[29]  Lazcano, Y., Nair, M. and Nair, P. (2005) Photovoltaic p-i-n Structure of Sb2S3 and CuSbS2 Absorber Films Obtained via Chemical Bath Deposition. Journal of the Electrochemical Society, 152, 635-638.
https://doi.org/10.1149/1.1945387
[30]  Mane, R.S. and Lokhande, C.D. (2003) Photoelectrochemical Cells Based on Nanocrystalline Sb2S3 Thin Films. Materials Chemistry and Physics, 78, 385-392.
https://doi.org/10.1016/S0254-0584(02)00155-4
[31]  Savadogo, O. (1998) Chemically and Electrochemically Deposited Thin Films for Solar Energy Materials. Solar Energy Materials and Solar Cells, 52, 361-388.
https://doi.org/10.1016/S0927-0248(97)00247-X
[32]  Perales, E., Lifante, G., Rueda, F. and Hares, C. (2007) Optical and Structural Properties in the Amorphous to Polycrystalline Transition in Sb2S3 Thin Films. Journal of Physics D: Applied Physics, 40, 2440-2444.
https://doi.org/10.1088/0022-3727/40/8/005
[33]  Perales, E., Rueda, F., Lamela, J. and Heras, C. (2008) Optical and Structural Properties of Sb2S3/MgF2 Multilayers for Laser Applications. Journal of Physics D: Applied Physics, 41, Article ID: 045403.
https://doi.org/10.1088/0022-3727/41/4/045403
[34]  Arun, P., Vedeshwar, A. and Mehra, N. (1997) Laser-Induced Crystallization in Sb2S3 Films. Materials Research Bulletin, 32, 907-913.
https://doi.org/10.1016/S0025-5408(97)00064-0
[35]  Herzog, V.Z., Bassell, S.L.H., Nesbitt, H.W. and Pratt, A.R. (2006) High Resolution XPS Study of the Large-Band-Gap Semiconductor Stibnite (Sb2S3): Structural Contributions and Surface Reconstruction. Surface Science, 600, 348-356.
https://doi.org/10.1016/j.susc.2005.10.034
[36]  Garcia, R.G.A., Avendano, C.A.M., Pal, M., Delgado, F.P. and Mathews, N.R. (2016) Antimony Sulfide (Sb2S3) Thin Films by Pulse Electrodeposition: Effect of Thermal Treatment on Structural, Optical and Electrical Properties. Materials Science in Semiconductor Processing, 44, 91-100.
https://doi.org/10.1016/j.mssp.2015.12.018
[37]  Grigas, J., Talik, E. and Lazauska, V. (2002) X-Ray Photoelectron Spectroscopy of Sb2S3 Crystals. Phase Transitions, 75, 323-337.
https://doi.org/10.1080/01411590290020448

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413