全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结直肠癌肝转移相关基因的生物信息学分析
Bioinformatics Analysis of Genes Related to Liver Metastasis of Colorectal Cancer

DOI: 10.12677/WJCR.2023.133017, PP. 120-132

Keywords: 结直肠癌,肝转移,生物信息学分析,GEO
Colorectal Cancer
, Liver Metastasis, Bioinformatics Analysis, GEO

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过对美国国家生物技术信息中心(NCBI)的GEO数据库现有的基因表达数据以及相关临床数据进行数据挖掘分析,以期寻找结直肠癌(Colorectal Cancer, CRC)肝转移发生的关键基因及治疗靶点。方法:对GEO数据库进行数据检索,筛选出包含正常结直肠组织、CRC组织以及CRC肝转移组织的基因芯片。采用GEO2R工具筛选CRC和正常结直肠组织的差异表达基因以及CRC与CRC肝转移之间的差异表达基因,进一步筛选出两基因集的共有差异表达基因。使用注释、注释可视化和集成发现数据库(DAVID)进行基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)途径分析。利用STRING数据库和Cytoscape软件进行蛋白–蛋白互作(PPI)网络的构建和Hub基因的筛选。使用R语言分析Hub基因在正常结直肠、CRC以及CRC肝转移组织中的表达情况,使用基因表达谱交互分析(GEPIA)数据库分析Hub基因与CRC预后的相关性。结果:检索得到基因芯片GSE49355,CRC和正常结直肠组织的基因集中存在1394个差异表达基因,CRC与CRC肝转移的基因集中存在125个差异表达基因,两个基因集共有的差异表达基因有29个。GO分析显示,它们的生物学过程可能主要富集在补体激活、正向调节多肽酶活性、替代途径等;细胞学组分主要定位于血液微粒以及细胞外周;分子功能富集于补体和凝血级联、IL-17信号通路、肿瘤坏死因子信号通路等。KEGG信号通路的富集分析显示,差异基因主要富集于补体和凝血级联、IL-17信号通路、TNF信号通路等。对蛋白质相互作用分析中有关联的基因进行排序,前5个Hub基因为SPP1、MMP1、MMP3、CXCL1、CXCL5,它们在CRC中的表达均高于正常结直肠组织,SPP1的表达量在正常结直肠、CRC以及CRC肝转移组织逐渐增高,并且SPP1的高表达与CRC患者较差的生存显著相关。结论:SPP1、MMP1、MMP3、CXCL1、CXCL5与CRC肝转移具有相关性,或可为进一步研究CRC肝转移发生发展的分子机制提供一定基础。
Purpose: To find the key genes and therapeutic targets of liver metastasis of colorectal cancer (CRC) by mining and analyzing the existing gene expression data and related clinical data in the GEO database of the National Biotechnology Information Center (NCBI). Methods: The GEO database was searched, and the gene chips containing normal colorectal, CRC and liver metastatic tissues of CRC were screened. GEO2R tool was used to screen the differentially expressed genes (DEGs) between CRC and normal colorectal tissues and between CRC and liver metastasis of CRC, and the common DEGs of the two gene sets were further screened. Annotation, Visualization and Integrated Discovery Database (DAVID) was used for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis. STRING database and Cytoscape software were used to construct Protein-Protein Interaction (PPI) network and screen Hub genes. The expression of Hub genes in normal colorectal, CRC and liver metastatic tissues of CRC was analyzed by R language, and the correlation between Hub genes and the prognosis of CRC was analyzed by Gene Expression Profile Interactive Analysis (GEPIA) database. Results: The gene chip GSE49355 showed that there were 1394 genes in CRC and normal colorectal tissues, 125 genes in CRC and liver metastasis of CRC, and 29 DEGs in the two gene sets. GO analysis showed that their biological processes may be mainly concentrated in complement activation, positive regulation of polypeptidase activity, alternative pathway. Cellular components were mainly located in blood particles and peripheral cells. Molecular functions were enriched in peptidase activator activity, CXCR chemokine

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  Shaukat, A., Kahi, C.J., Burke, C.A., et al. (2021) ACG Clinical Guidelines: Colorectal Cancer Screening 2021. The American Journal of Gastroenterology, 116, 458-479.
https://doi.org/10.14309/ajg.0000000000001122
[3]  Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal Cancer. Lancet, 394, 1467-1480.
https://doi.org/10.1016/S0140-6736(19)32319-0
[4]  Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732.
https://doi.org/10.1038/s41575-019-0189-8
[5]  Heinimann, K. (2018) Hereditary Colorectal Cancer: Clinics, Diagnostics and Management. Therapeutische Umschau, 75, 601-606.
https://doi.org/10.1024/0040-5930/a001046
[6]  Chandra, R., et al. (2021) The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers, 13, Article 6202.
https://doi.org/10.3390/cancers13246206
[7]  Balahura, L.R., et al. (2020) Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. Journal of Immunology Research, 2020, Article ID: 2549763.
https://doi.org/10.1155/2020/2549763
[8]  文雪梅, 夏俊凯, 张丽静, 等. 基于GEO数据库研究结肠癌的生物标志物[J]. 中国现代医生, 2022, 60(9): 1-7+106+197.
[9]  刘迁, 祁国萍, 于华裔, 等. 结肠癌核心基因和独立预后因子筛选的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(3): 755-765.
[10]  操利超, 巴颖, 丁世涛, 等. 基于TCGA和GEO数据库探索结肠癌肿瘤微环境中的免疫相关预后因子[J]. 临床检验杂志, 2022, 40(6): 466-474.
[11]  Barrett, T., Wilhite, S.E., Ledoux, P., et al. (2013) NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Research, 41, D991-D995.
https://doi.org/10.1093/nar/gks1193
[12]  Zhao, W., Dai, S., Yue, L., et al. (2022) Emerging Mechanisms Progress of Colorectal Cancer Liver Metastasis. Frontiers in Endocrinology, 13, Article 1081585.
https://doi.org/10.3389/fendo.2022.1081585
[13]  Zhang, T., Yuan, K., Wang, Y., et al. (2021) Identification of Candidate Biomarkers and Prognostic Analysis in Colorectal Cancer Liver Metastases. Frontiers in Oncology, 11, Article 652354.
https://doi.org/10.3389/fonc.2021.652354
[14]  Razi, S., Baradaran Noveiry, B., Keshavarz-Fathi, M. and Rezaei, N. (2019) IL-17 and Colorectal Cancer: From Carcinogenesis to Treatment. Cytokine, 116, 7-12.
https://doi.org/10.1016/j.cyto.2018.12.021
[15]  Mirzaei, A., Mohammadi, S., Ghaffari, S.H., et al. (2018) Osteopontin b and c Splice Isoforms in Leukemias and Solid Tumors: Angiogenesis Alongside Chemoresistance. Asian Pacific Journal of Cancer Prevention, 19, 615-623.
[16]  Pang, X., Zhang, J., He, X., et al. (2021) SPP1 Promotes Enzalutamide Resistance and Epithelial-Mesenchymal-Transition Activation in Castration-Resistant Prostate Cancer via PI3K/AKT and ERK1/2 Pathways. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5806602.
https://doi.org/10.1155/2021/5806602
[17]  Wei, J., Chen, Z., Hu, M., et al. (2021) Characterizing Intercellular Communication of Pan-Cancer Reveals SPP1+ Tumor-Associated Macrophage Expanded in Hypoxia and Promoting Cancer Malignancy through Single-Cell RNA-Seq Data. Frontiers in Cell and Developmental Biology, 9, Article 749210.
https://doi.org/10.3389/fcell.2021.749210
[18]  Zeng, B., Zhou, M., Wu, H. and Xiong, Z. (2018) SPP1 Promotes Ovarian Cancer Progression via Integrin β1/FAK/AKT Signaling Pathway. OncoTargets and Therapy, 11, 1333-1343.
https://doi.org/10.2147/OTT.S154215
[19]  Wang, Y., Su, J., Wang, Y., et al. (2019) The Interaction of YBX1 with G3BP1 Promotes Renal Cell Carcinoma Cell Metastasis via YBX1/G3BP1-SPP1-NF-κB Signaling Axis. Journal of Experimental & Clinical Cancer Research, 38, Article No. 386.
https://doi.org/10.1186/s13046-019-1347-0
[20]  Gao, S., Gang, J., Yu, M., Xin, G. and Tan, H. (2021) Computational Analysis for Identification of Early Diagnostic Biomarkers and Prognostic Biomarkers of Liver Cancer Based on GEO and TCGA Databases and Studies on Pathways and Biological Functions Affecting the Survival Time of Liver Cancer. BMC Cancer, 21, Article No. 791.
https://doi.org/10.1186/s12885-021-08520-1
[21]  Liang, L., Lu, G., Pan, G., et al. (2019) A Case-Control Study of the Association between the SPP1 Gene SNPs and the Susceptibility to Breast Cancer in Guangxi., China. Frontiers in Oncology, 9, Article 1415.
https://doi.org/10.3389/fonc.2019.01415
[22]  Xu, C., Sun, L., Jiang, C., et al. (2017) SPP1, Analyzed by Bioinformatics Methods, Promotes the Metastasis in Colorectal Cancer by Activating EMT Pathway. Biomedicine & Pharmacotherapy, 91, 1167-1177.
https://doi.org/10.1016/j.biopha.2017.05.056
[23]  Vaquero, J., Guedj, N., Clapéron, A., Nguyen Ho-Bouldoires, T.H., Paradis, V. and Fouassier, L. (2017) Epithelial-Mesenchymal Transition in Cholangiocarcinoma: From Clinical Evidence to Regulatory Networks. Journal of Hepatology, 66, 424-441.
https://doi.org/10.1016/j.jhep.2016.09.010
[24]  Choe, E.K., Yi, J.W., Chai, Y.J. and Park, K.J. (2018) Upregulation of the Adipokine Genes ADIPOR1 and SPP1 Is Related to Poor Survival Outcomes in Colorectal Cancer. Journal of Surgical Oncology, 117, 1833-1840.
https://doi.org/10.1002/jso.25078
[25]  Gobin, E., Bagwell, K., Wagner, J., et al. (2019) A Pan-Cancer Perspective of Matrix Metalloproteases (MMP) Gene Expression Profile and Their Diagnostic/Prognostic Potential. BMC Cancer, 19, Article No. 581.
https://doi.org/10.1186/s12885-019-5768-0
[26]  Jiang, S., Liu, H., Zhang, J., Zhang, F., Fan, J. and Liu, Y. (2021) MMP1 Regulated by NEAT1/miR-361-5p Axis Facilitates the Proliferation and Migration of Cutaneous Squamous Cell Carcinoma via the Activation of Wnt Pathway. Cancer Biology & Therapy, 22, 381-391.
https://doi.org/10.1080/15384047.2021.1941583
[27]  Liu, M., Hu, Y., Zhang, M.-F., et al. (2016) MMP1 Promotes Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma. Cancer Letters, 377, 97-104.
https://doi.org/10.1016/j.canlet.2016.04.034
[28]  Zhang, W., Huang, X., Huang, R., et al. (2022) MMP1 Overexpression Promotes Cancer Progression and Associates with Poor Outcome in Head and Neck Carcinoma. Computational and Mathematical Methods in Medicine, 2022, Article ID: 3058342.
https://doi.org/10.1155/2022/3058342
[29]  Scheau, C., Badarau, I.A., Costache, R., et al. (2019) The Role of Matrix Metalloproteinases in the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma. Analytical Cellular Pathology, 2019, Article ID: 9423907.
https://doi.org/10.1155/2019/9423907
[30]  Chu, C., Liu, X., Bai, X., et al. (2018) MiR-519d Suppresses Breast Cancer Tumorigenesis and Metastasis via Targeting MMP3. International Journal of Biological Sciences, 14, 228-236.
https://doi.org/10.7150/ijbs.22849
[31]  Lyu, X., Xu, X., Song, A., Guo, J., Zhang, Y. and Zhang, Y. (2019) Ginsenoside Rh1 Inhibits Colorectal Cancer Cell Migration and Invasion in Vitro and Tumor Growth in Vivo. Oncology Letters, 18, 4160-4166.
https://doi.org/10.3892/ol.2019.10742
[32]  Tang, B., Xu, D., Zhao, Y., Liang, G., Chen, X. and Wang, L. (2018) Celastrol Inhibits Colorectal Cancer Cell Proliferation and Migration through Suppression of MMP3 and MMP7 by the PI3K/AKT Signaling Pathway. Anti-Cancer Drugs, 29, 530-538.
https://doi.org/10.1097/CAD.0000000000000621
[33]  Atretkhany, K.N., Drutskaya, M.S., Nedospasov, S.A., Grivennikov, S.I. and Kuprash, D.V. (2016) Chemokines, Cytokines and Exosomes Help Tumors to Shape Inflammatory Microenvironment. Pharmacology & Therapeutics, 168, 98-112.
https://doi.org/10.1016/j.pharmthera.2016.09.011
[34]  Roy, I., Getschman, A.E., Volkman, B.F. and Dwinell, M.B. (2017) Exploiting Agonist Biased Signaling of Chemokines to Target Cancer. Molecular Carcinogenesis, 56, 804-813.
https://doi.org/10.1002/mc.22571
[35]  Zhuo, C., Wu, X., Li, J., et al. (2018) Chemokine (C-X-C Motif) Ligand 1 Is Associated with Tumor Progression and Poor Prognosis in Patients with Colorectal Cancer. Bioscience Reports, 38, BSR20180580.
https://doi.org/10.1042/BSR20180580
[36]  Zhao, J., Ou, B., Han, D., et al. (2017) Tumor-Derived CXCL5 Promotes Human Colorectal Cancer Metastasis through Activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-Catenin Pathways. Molecular Cancer, 16, Article No. 70.
https://doi.org/10.1186/s12943-017-0629-4
[37]  Wang, D., Sun, H., Wei, J., Cen, B. and DuBois, R.N. (2017) CXCL1 Is Critical for Premetastatic Niche Formation and Metastasis in Colorectal Cancer. Cancer Research, 77, 3655-3665.
https://doi.org/10.1158/0008-5472.CAN-16-3199

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133