全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DNA Methyltransferase Inhibitors Induce Cerebral Dopamine Neurotrophic Factor Expression in C6 Glioma Cells

DOI: 10.4236/ajmb.2023.133012, PP. 170-182

Keywords: CDNF, MANF, 5-Azacytidine, 5-Aza-2’-deoxycytidine, Zebularine, Gene Expression

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are involved in neuroprotection and mitigating endoplasmic reticulum (ER) stress in the brain and peripheral organs. In earlier work, an increase in histone acetylation, following treatment with an epigenetic modulator, valproic acid, was associated with induction of CDNF and MANF in cultured cells and rat brain. These findings prompted an investigation of the effects of DNA methyltransferase (DNMT) inhibitors, which can alter epigenetic function, on the expression of CDNF and MANF. Rat C6 glioma cells were treated with a micromolar range of DNMT inhibitors: 5-aza-2’-deoxycytidine (DAC or decitabine), 5-azacytidine (AZA) or zebularine (ZEB) for 24 h. Subsequently, qPCR analysis was used to examine the mRNA expression of DNMT1, ten-eleven translocation methylcytosine dioxygenase 2 (TET-2), CDNF and MANF. A significant dose-dependent decrease in DNMT1 mRNA levels, together with a significant increase in TET-2 expression, was observed following treatment with AZA or DAC. Importantly, DAC, AZA and ZEB caused a significant dose-dependent increase in CDNF mRNA levels. In contrast, MANF mRNA expression decreased following treatment with AZA, with no significant effects observed with DAC or ZEB. Western analysis revealed no significant changes in CDNF protein levels following treatment with DAC for 24 h. The significant increase in CDNF expression, following treatment with DNMT1 inhibitors, suggests that DNA methylation is involved in the regulation of this neurotrophic factor. Clarification of the epigenetic or other mechanisms underlying the regulation of CDNF may provide novel therapeutic approaches in neurodegenerative and ER stress-related disorders.

References

[1]  Lindahl, M., Saarma, M. and Lindholm, P. (2017) Unconventional Neurotrophic Factors CDNF and MANF: Structure, Physiological Functions and Therapeutic Potential. Neurobiology of Disease, 97, 90-102.
https://doi.org/10.1016/j.nbd.2016.07.009
[2]  Huttunen, H.J. and Saarma, M. (2019) CDNF Protein Therapy in Parkinson’s Disease. Cell Transplantation, 28, 349-366.
https://doi.org/10.1177/0963689719840290
[3]  Danilova, T., Galli, E., Pakarinen, E., Palm, E., Lindholm, P., Saarma, M. and Lindahl, M. (2019) Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Is Highly Expressed in Mouse Tissues with Metabolic Function. Frontiers in Endocrinology (Lausanne), 10, Article No. 765.
https://doi.org/10.3389/fendo.2019.00765
[4]  Chalazonitis, A., Li, Z., Pham, T.D., Chen, J., Rao, M., Lindholm, P., Saarma, M., Lindahl, M. and Gershon, M.D. (2020) Cerebral Dopamine Neurotrophic Factor Is Essential for Enteric Neuronal Development, Maintenance, and Regulation of Gastrointestinal Transit. Journal of Comparative Neurology, 528, 2420-2444.
https://doi.org/10.1002/cne.24901
[5]  Jantti, M. and Harvey, B.K. (2020) Trophic Activities of Endoplasmic Reticulum Proteins CDNF and MANF. Cell and Tissue Research, 382, 83-100.
https://doi.org/10.1007/s00441-020-03263-0
[6]  Vaissière, T., Sawan, C. and Herceg, Z. (2008) Epigenetic Interplay between Histone Modifications and DNA Methylation in Gene Silencing. Mutation Research—Reviews in Mutation Research, 659, 40-48.
https://doi.org/10.1016/j.mrrev.2008.02.004
[7]  Almutawaa, W., Kang, N.H., Pan, Y. and Niles, L.P. (2014) Induction of Neurotrophic and Differentiation Factors in Neural Stem Cells by Valproic Acid. Basic & Clinical Pharmacology & Toxicology, 115, 216-221.
https://doi.org/10.1111/bcpt.12201
[8]  Niles, L.P., Sathiyapalan, A., Bahna, S., Kang, N.H. and Pan, Y. (2012) Valproic Acid Up-Regulates Melatonin MT1 and MT2 Receptors and Neurotrophic Factors CDNF and MANF in the Rat Brain. International Journal of Neuropsychopharmacology, 15, 1343-1350.
https://doi.org/10.1017/S1461145711001969
[9]  Detich, N., Bovenzi, V. and Szyf, M. (2003) Valproate Induces Replication Independent Active DNA Demethylation. Journal of Biological Chemistry, 278, 27586-27592.
https://doi.org/10.1074/jbc.M303740200
[10]  Arzenani, M.K., Zade, A.E., Ming, Y., Vijverberg, S.J.H., Zhang, Z., Khan, Z., Sadique, S., Kallenbach, L., Hu, L., Vukojevic, V. and Ekstrom, T.J. (2011) Genomic DNA Hypomethylation by Histone Deacetylase Inhibition Implicates DNMT1 Nuclear Dynamics. Molecular and Cellular Biology, 31, 4119-4128.
https://doi.org/10.1128/MCB.01304-10
[11]  Ma, L., Li, C., Yin, H., Huang, J., Yu, S., Zhao, J., Tang, Y., Yu, M., Lin, J., Ding, L. and Cui, Q. (2023) The Mechanism of DNA Methylation and miRNA in Breast Cancer. International Journal of Molecular Sciences, 24, Article No. 9360.
https://doi.org/10.3390/ijms24119360
[12]  Takebayashi, S., Tamura, T., Matsuoka, C. and Okano, M. (2007) Major and Essential Role for the DNA Methylation Mark in Mouse Embryogenesis and Stable Association of DNMT1 with Newly Replicated Regions. Molecular and Cellular Biology, 27, 8243-8258.
https://doi.org/10.1128/MCB.00899-07
[13]  Santiago, M., Antunes, C., Guedes, M., Sousa, N. and Marques, C.J. (2014) TET Enzymes and DNA Hydroxymethylation in Neural Development and Function—How Critical Are They? Genomics, 104, 334-340.
https://doi.org/10.1016/j.ygeno.2014.08.018
[14]  Manzoni, E.F.M., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F. and Brevini, T.A.L. (2016) 5-Azacytidine Affects TET2 and Histone Transcription and Reshapes Morphology of Human Skin Fibroblasts. Scientific Reports, 6, Article No. 37017.
https://doi.org/10.1038/srep37017
[15]  Wang, X., Wang, J., Yu, Y., Ma, T., Chen, P., Zhou, B. and Tao, R. (2017) Decitabine Inhibits T Cell Proliferation via a Novel TET2-Dependent Mechanism and Exerts Potent Protective Effect in Mouse Auto- and Allo-Immunity Models. Oncotarget, 8, 56802-56815.
https://doi.org/10.18632/oncotarget.18063
[16]  Kim, B., Castro, L.M.R., Jawed, S. and Niles, L.P. (2008) Clinically Relevant Concentrations of Valproic Acid Modulate Melatonin MT1 Receptor, HDAC and MeCP2 mRNA Expression in C6 Glioma Cells. European Journal of Pharmacology, 589, 45-48.
https://doi.org/10.1016/j.ejphar.2008.04.058
[17]  Hollenbach, P.W., Nguyen, A.N., Brady, H., Williams, M., Ning, Y., Richard, N., Krushel, L., Aukerman, S.L., Heise, C. and MacBeth, K.J. (2010) A Comparison of Azacitidine and Decitabine Activities in Acute Myeloid Leukemia Cell Lines. PLOS ONE, 5, e9001.
https://doi.org/10.1371/journal.pone.0009001
[18]  Najem, S.A., Khawaja, G., Hodroj, M.H., Babikian, P. and Rizk, S. (2019) Adjuvant Epigenetic Therapy of Decitabine and Suberoylanilide Hydroxamic Acid Exerts Anti-Neoplastic Effects in Acute Myeloid Leukemia Cells. Cells, 8, Article No. 1480.
https://doi.org/10.3390/cells8121480
[19]  Wang, L., Guo, X., Guo, X., Zhang, X. and Ren, J. (2019) Decitabine Promotes Apoptosis in Mesenchymal Stromal Cells Isolated from Patients with Myelodysplastic Syndromes by Inducing Reactive Oxygen Species Generation. European Journal of Pharmacology, 863, Article ID: 172676.
https://doi.org/10.1016/j.ejphar.2019.172676
[20]  Brodská, B., Holoubek, A., Otevrelová, P. and Kuzelová, K. (2013) Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes. BioMed Research International, 2013, Article ID: 659254.
https://doi.org/10.1155/2013/659254
[21]  Sanaei, M., Kavoosi, F. and Pourahmadi, M. (2021) Effect of Decitabine (5-aza-2’-deoxycytidine, 5-aza-CdR) in Comparison with Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) on DNMT1, DNMT3a and DNMT3b, HDAC 1-3, SOCS 1, SOCS 3, JAK2, and STAT3 Gene Expression in Hepatocellular Carcinoma HLE and LCL-PI 11 Cell Lines. The Asian Pacific Journal of Cancer Prevention, 22, 2089-2098.
https://doi.org/10.31557/APJCP.2021.22.7.2089
[22]  Bahna, S.G. and Niles, L.P. (2017) Epigenetic Induction of Melatonin MT1 Receptors by Valproate: Neurotherapeutic Implications. European Neuropsychopharmacology, 27, 828-832.
https://doi.org/10.1016/j.euroneuro.2017.06.002
[23]  Pan, Y. and Niles, L.P. (2015) Epigenetic Mechanisms of Melatonin Action in Human SH-SY5Y Neuroblastoma Cells. Molecular and Cellular Endocrinology, 402, 57-63.
https://doi.org/10.1016/j.mce.2015.01.003
[24]  Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408.
https://doi.org/10.1006/meth.2001.1262
[25]  Aimiuwu, J., Wang, H., Chen, P., Xie, Z., Wang, J., Liu, S., Klisovic, R., Mims, A., Blum, W., Marcucci, G. and Chan, K.K. (2012) RNA-Dependent Inhibition of Ribonucleotide Reductase Is a Major Pathway for 5-Azacytidine Activity in Acute Myeloid Leukemia. Blood, 119, 5229-5238.
https://doi.org/10.1182/blood-2011-11-382226
[26]  Kim, J.T., Li, J., Song, J., Lee, E.Y., Weiss, H.L., Townsend Jr., C.M. and Evers, B.M. (2015) Differential Expression and Tumorigenic Function of Neurotensin Receptor 1 in Neuroendocrine Tumor Cells. Oncotarget, 6, 26960-26970.
https://doi.org/10.18632/oncotarget.4745
[27]  Sayar, N., Karahan, G., Konu, O., Bozkurt, B., Bozdogan, O. and Yulug, I.G. (2015) Transgelin Gene Is Frequently Downregulated by Promoter DNA Hypermethylation in Breast Cancer. Clinical Epigenetics, 7, Article No. 104.
https://doi.org/10.1186/s13148-015-0138-5
[28]  Seelan, R.S., Mukhopadhyay, P., Pisano, M.M. and Greene, R.M. (2018) Effects of 5-Aza-2’-deoxycytidine (Decitabine) on Gene Expression. Drug Metabolism Reviews, 50, 193-207.
https://doi.org/10.1080/03602532.2018.1437446
[29]  Evans, I.C., Barnes, J.L., Garner, I.M., Pearce, D.R., Maher, T.M., Shiwen, X., Renzoni, E.A., Wells, A.U., Denton, C.P., Laurent, G.J., Abraham, D.J. and McAnulty, R.J. (2016) Epigenetic Regulation of Cyclooxygenase-2 by Methylation of c8orf4 in Pulmonary Fibrosis. Clinical Science (London), 130, 575-586.
https://doi.org/10.1042/CS20150697
[30]  Koussounadis, A., Langdon, S.P., Um, I.H., Harrison, D.J. and Smith, V.A. (2015) Relationship between Differentially Expressed mRNA and mRNA-Protein Correlations in a Xenograft Model System. Scientific Reports, 5, Article No. 10775.
https://doi.org/10.1038/srep10775
[31]  Liu, Y., Beyer, A. and Aebersold, R. (2016) On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell, 165, 535-550.
https://doi.org/10.1016/j.cell.2016.03.014
[32]  Cheng, Z., Teo, G., Krueger, S., Rock, T.M., Koh, H.W., Choi, H. and Vogel, C. (2016) Differential Dynamics of the Mammalian mRNA and Protein Expression Response to Misfolding Stress. Molecular Systems Biology, 12, Article No. 855.
https://doi.org/10.15252/msb.20156423
[33]  Apostolou, A., Shen, Y., Liang, Y., Luo, J. and Fang, S. (2008) Armet, a UPR Upregulated Protein, Inhibits Cell Proliferation and ER Stress-Induced Cell Death. Experimental Cell Research, 314, 2454-2467.
https://doi.org/10.1016/j.yexcr.2008.05.001
[34]  Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J.-I.I., Naitoh, M., Koizumi, A. and Nagata, K. (2007) ARMET Is a Soluble ER Protein Induced by the Unfolded Protein Response via ERSE-II Element. Cell Structure and Function, 32, 41-50.
https://doi.org/10.1247/csf.07001
[35]  Eesmaa, A., Yu, L.Y., Goos, H., Danilova, T., Noges, K., Pakarinen, E., Varjosalo, M., Lindahl, M., Lindholm, P. and Saarma, M. (2022) CDNF Interacts with ER Chaperones and Requires UPR Sensors to Promote Neuronal Survival. International Journal of Molecular Sciences, 23, Article No. 9489.
https://doi.org/10.3390/ijms23169489
[36]  Konovalova, J., Gerasymchuk, D., Arroyo, S.N., Kluske, S., Mastroianni, F., Pereyra, A.V. and Domanskyi, A. (2021) Human-Specific Regulation of Neurotrophic Factors MANF and CDNF by microRNAs. International Journal of Molecular Sciences, 22, Article No. 9691.
https://doi.org/10.3390/ijms22189691
[37]  Zhao, J., Li, H., Zhao, S., Wang, E., Zhu, J., Feng, D., Zhu, Y., Dou, W., Fan, Q., Hu, J., Jia, L. and Liu, L. (2021) Epigenetic Silencing of miR-144/451a Cluster Contributes to HCC Progression via Paracrine HGF/MIF-Mediated TAM Remodeling. Molecular Cancer, 20, Article No. 46.
https://doi.org/10.1186/s12943-021-01343-5
[38]  Bian, E.B., Ma, C.C., He, X.J., Wang, C., Zong, G., Wang, H.L. and Zhao, B. (2016) Epigenetic Modification of miR-141 Regulates SKA2 by an Endogenous “Sponge” HOTAIR in Glioma. Oncotarget, 7, 30610-30625.
https://doi.org/10.18632/oncotarget.8895
[39]  Go, H., Jang, J. Y., Kim, C.W., Huh, J., Kim, P.J. and Jeon, Y.K. (2019) Identification of microRNAs Modulated by DNA Hypomethylating Drugs in Extranodal NK/T-Cell Lymphoma. Leukemia & Lymphoma, 61, 66-74.
https://doi.org/10.1080/10428194.2019.1654096
[40]  Hetz, C., Zhang, K. and Kaufman, R.J. (2020) Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nature Reviews Molecular Cell Biology, 21, 421-438.
https://doi.org/10.1038/s41580-020-0250-z
[41]  Arancibia, D., Zamorano, P. and Andrés, M.E. (2018) CDNF Induces the Adaptive Unfolded Protein Response and Attenuates Endoplasmic Reticulum Stress-Induced Cell Death. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 1579-1589.
https://doi.org/10.1016/j.bbamcr.2018.08.012
[42]  Albert, K., Raymundo, D.P., Panhelainen, A., Eesmaa, A., Shvachiy, L., Araújo, G.R., Chmielarz, P., Yan, X., Singh, A., Cordeiro, Y., Palhano, F.L., Foguel, D., Luk, K.C., Domanskyi, A., Voutilainen, M.H., Huttunen, H.J., Outeiro, T.F., Saarma, M., Almeida, M.S. and Airavaara, M. (2021) Cerebral Dopamine Neurotrophic Factor Reduces α-Synuclein Aggregation and Propagation and Alleviates Behavioral Alterations in Vivo. Molecular Therapy, 29, 2821-2840.
https://doi.org/10.1016/j.ymthe.2021.04.035
[43]  Lindholm, P., Voutilainen, M.H., Laurén, J., Peranen, J., Leppanen, V.M., Andressoo, J.O., Lindahl, M., Janhunen, S., Kalkkinen, N., Timmusk, T., Tuominen, R.K. and Saarma, M. (2007) Novel Neurotrophic Factor CDNF Protects and Rescues Midbrain Dopamine Neurons in Vivo. Nature, 448, 73-77.
https://doi.org/10.1038/nature05957

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133