全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites

DOI: 10.4236/anp.2023.123009, PP. 106-122

Keywords: Nickel Oxide/Hydroxide, Doping, Morphology, Magnetic Properties, Carambola Fruit Juice

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (CoxNi1-xO/Ni(OH)2) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous CoxNi1-xO/Ni(OH)2) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10-3 emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10-3 emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (CoxNi1-xO/Ni(OH)2) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials.

References

[1]  Kim, S., Jeong, J.-E., Hong, J., Lee, K., Lee, M.J., Woo, H.Y. and Hwang, I. (2020) Improved Interfacial Crystallization by Synergic Effects of Precursor Solution Stoichiometry and Conjugated Polyelectrolyte Interlayer for High Open-Circuit Voltage of Perovskite Photovoltaic Diodes. ACS Applied Materials & Interfaces, 12, 12328-12336.
https://doi.org/10.1021/acsami.9b22283
[2]  Zhang, J., Wang, J., Fu, Y., Zhang, B. and Xie, Z. (2014) Efficient and Stable Polymer Solar Cells with Annealing-Free Solution-Processible NiO Nanoparticles as Anode Buffer Layers. Journal of Materials Chemistry C, 2, 8295-8302.
https://doi.org/10.1039/C4TC01302F
[3]  Fominykh, K., Tok, G.C., Zeller, P., Hajiyani, H., Miller, T., Döblinger, M., Pentcheva, R., Bein, T. and Fattakhova-Rohlfing, D. (2017) Rock Salt Ni/Co Oxides with Unusual Nanoscale-Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials, 27, Article ID: 1605121.
https://doi.org/10.1002/adfm.201605121
[4]  Ren, X., Xie, L., Kim, W.B., Lee, D.G., Jung, H.S. and Liu, S. (2019) Chemical Bath Deposition of Co-Doped TiO2 Electron Transport Layer for Hysteresis-Suppressed High-Efficiency Planar Perovskite Solar Cells. Solar RRL, 3, 1900176.
https://doi.org/10.1002/solr.201900176
[5]  Hui, X.U., Zeng, M., Li, J. and Tong, X. (2015) Facile Hydrothermal Synthesis of Flower-Like Codoped NiO Hierarchical Nanosheets as Anode Materials for Lithiumion Batteries. RSC Advances, 5, 91493-91499.
https://doi.org/10.1039/C5RA17017F
[6]  Fomekong, R.L. and Saruhan, B. (2021) Titanium Based Materials for High-Temperature Gas Sensor in Harsh Environment Application. Chemistry Proceedings, 5, Article 66.
https://doi.org/10.3390/CSAC2021-10480
[7]  Chen, P.-C., Hsieh, S.-J., Zou, J. and Chen, C.-C. (2014) Selectively Dealloyed Ti/TiO2 Network Nanostructures for Supercapacitor Application. Materials Letters, 133, 175-178.
https://doi.org/10.1016/j.matlet.2014.06.165
[8]  Mohamed, M.A., Galwey, A.K. and Halawy, S.A. (2005) A Comparative Study of the Thermal Reactivities of Some Transition Metal Oxalates in Selected Atmospheres. Thermochimica Acta, 429, 57-72.
https://doi.org/10.1016/j.tca.2004.08.021
[9]  Borel, N.N.M., Foba-Tendo, J., Yufanyi, D.M., Etape, E.P., Eko, J.N. and Ngolui, L.J. (2014) Averrhoa carambola: A Renewable Source of Oxalic Acid for the Facile and Green Synthesis of Divalent Metal (Fe, Co, Ni, Zn, and Cu) Oxalates and Oxide Nanoparticles. Journal of Applied Chemistry, 2014, Article ID: 767695.
https://doi.org/10.1016/j.tca.2004.08.021
[10]  Yong, W.J. (1989) The Thermal Decomposition of Nickel Oxalates Doped with Traces of Other Metal Ions. Thermochimica Acta, 147, 251-260.
https://doi.org/10.1016/0040-6031(89)85180-9
[11]  Wiedemann, V.H.G. and Nehring, D. (1960) Thermogravimetrische Untersuchungen, III. Der Thermische Zerfall von Nickelund Magnesiumoxalat und von Nickel-Magnesium-Mischoxalaten in Verschiedenen Gasatmosphären. Zeitschrift für anorganische und allgemeine Chemie, 304, 137-146.
https://doi.org/10.1002/zaac.19603040303
[12]  Dollimore, D., Griffiths, D.L. and Nicholson, D. (1963) The Thermal Decomposition of Oxalates. Part II. Thermogravimetric Analysis of Various Oxalates in Air and in Nitrogen. Journal of the Chemical Society, 2617-2623.
https://doi.org/10.1039/jr9630002617
[13]  Broadbent, D., Dollimore, D. and Dollimore, J. (1966) The Thermal Decomposition of Oxalates. Part V. The Thermal Decomposition of Nickel Oxalate Dihydrate. Journal of the Chemical Society, 278-281.
https://doi.org/10.1039/j19660000278
[14]  Kyung, H.K., Sho, F. and Yoshio, A. (2022) Incorporation of Co2+, Cu2+ and Zn2+ Ions into Nickel Oxide Thin Films and Their Enhanced Electrochemical and Electrochromic Performances. International Journal of Electrochemical Science, 17, Article ID: 220125.
https://doi.org/10.20964/2022.01.39
[15]  Akkaya, M. and Akman, E. (2021) The Synthesis Copper-Doped Nickel Oxide and Application of Hybrid Nanolubricants as a Compressor Oil. Gazi Mühendislik Bilimleri Dergisi, 7, 134-142.
https://doi.org/10.30855/gmbd.2021.02.06
[16]  Kate, R.S. and Deokate, R.J. (2020) Effect of Cobalt Doping on Electrochemical Properties of Sprayed Nickel Oxide Thin Films. Materials Science for Energy Technologies, 3, 830-839.
https://doi.org/10.1016/j.mset.2020.06.008
[17]  Cuong, N.D., Tran, T.D., Nguyen, Q.T., Van Minh, H.H., Hoa, T.T., Quang, D.T., Klysubun, W. and Tran, P.D. (2021) Highly Porous Codoped NiO Nanorods: Facile Hydrothermal Synthesis and Electrocatalytic Oxygen Evolution Properties. Royal Society Open Science, 8, Article ID: 202352.
https://doi.org/10.1098/rsos.202352
[18]  Marand, Z.R., Kermanpur, A., Karimzadeh, F., Barea, E.M., Hassanabadi, E., Anaraki, E.H., Julián-López, B., Masi, S. and Mora-Seró, I. (2020) Structural and Electrical Investigation of Cobalt-Doped NiOx/Perovskite Interface for Efficient Inverted Solar Cells. Nanomaterials, 10, Article 872.
https://doi.org/10.3390/nano10050872
[19]  Sharma, J., Srivastava, P., Singh, G., Akhtar, M.S. and Ameen, S. (2015) Biosynthesized NiO Nanoparticles: Potential Catalyst for Ammonium Perchlorate and Composite Solid Propellants Ceramics International, 41, 1573-1578.
https://doi.org/10.1016/j.ceramint.2014.09.093
[20]  Etape, E.P., Ngolui, L.J., Foba-Tendo, J., Yufanyi, D.M. and Namondo, B.V. (2017) Synthesis and Characterization of Cook, TiO2 and CuO-TiO2 Mixed Oxide by a Modified Oxalate Route. Journal of Applied Chemistry, 2017, Article ID: 4518654.
https://doi.org/10.1155/2017/4518654
[21]  Mansour, S.A.A. (1993) Spectroscopic and Microscopic Investigations of the Thermal Decomposition Course of Nickel Oxysalts. Part 3. Nickel Oxalate Dihydrate. Thermochimica Acta, 230, 243-257.
https://doi.org/10.1016/0040-6031(93)80364-G
[22]  Yu, C., Zhang, L., Shi, J., Zhao, J., Gao, J. and Yan, D. (2008) A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution and Their Electrochemical Properties. Advanced Functional Materials, 18, 1544-1554.
https://doi.org/10.1002/adfm.200701052
[23]  Małecka, B., Małecki, A., Drożdż-Cieśla, E., Tortet, L., Llewellyn, P. and Rouquerol, F. (2007) Some Aspects of Thermal Decomposition of NiC2O4·2H2O. Thermochimica Acta, 466, 57-62.
https://doi.org/10.1016/j.tca.2007.10.010
[24]  Boyle, B.J., King, E.G. and Conway, K.C. (1954) Heat of formation of Nickel Oxide and Cobalt Oxide (NiO and CoO) of Cobustion Calorimetry. Journal of the American Chemical Society, 76, 3835-3837.
https://doi.org/10.1021/ja01643a072
[25]  Lenin, R. and Joy, P.A. (2016) Role of Primary and Secondary Surfactant Layers on the Thermal Conductivity of Lauric Acid Coated Magnetite Nanofluids. The Journal of Physical Chemistry C, 120, 11640-11651.
https://doi.org/10.1021/acs.jpcc.5b12476
[26]  Lin, Z., et al. (2016) Morphology-Controllable Synthesis and Thermal Decomposition of Ag and Ni oxalate for Ag-Ni Alloy Electrical Contact Materials. Materials & Design, 108, 640-647.
https://doi.org/10.1016/j.matdes.2016.06.123
[27]  Etape, E.P., Foba-Tendo, J., Namondo, B.V., Yufanyi, D.M., Tedjieukeng, H.M.K., Fomekonga, R.L. and Ngolui, L.J. (2020) Nano Size CaCu3Ti4O12 Green Synthesis and Characterization of a Precursor Oxalate Obtained from Averrhoa carambola Fruit Juice and Its Thermal Decomposition to the Perovskite. Journal of Nanomaterials, 2020, Article ID: 8830136.
https://doi.org/10.1155/2020/8830136
[28]  Liu, F., Yang, X., Qiao, Z., Zhang, L., Cao, B. and Duan, G. (2017) Highly Transparent 3D NiO-Ni/Ag-Nanowires/FTO Micro-Supercapacitor Electrodes for Fully Transparent Electronic Device Purpose. Electrochimica Acta, 260, 281-289.
https://doi.org/10.1016/j.electacta.2017.11.011
[29]  Govindarajan, B., Palanimuthu, R. and Manikandan, K.M. (2019) Influence of Mg Doping in Magnetic Properties of NiO Nanoparticles and Its Electrical Applications. Journal of Materials Science: Materials in Electronics, 30, 6519-6527.
[30]  Wardani, M., Yulizar, Y., Abdullah, I. and Apriandanu, D.O.B. (2019) Synthesis of NiO Nanoparticles via Green Route Using Ageratum conyzoides L. Leaf Extract and Their Catalytic Activity. Proceedings of 13th Joint Conference on Chemistry (13th JCC), Semarang, 7-8 September 2018, Article ID: 012077.
https://doi.org/10.1088/1757-899X/509/1/012077
[31]  Anand, G.T., Nithiyavathi, R., Ramesh, R., Sundaram, S.J. and Kaviyarasu, K. (2020) Structural and Optical Properties of Nickel Oxide Nanoparticle. Surfaces and Interfaces, 18, Article ID: 100460.
[32]  Stoner, E.C. and Wohlfarth, E.P. (1948) A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philosophical Transactions of the Royal Society A, 240, 599-642.
https://doi.org/10.1098/rsta.1948.0007
[33]  Etape, E.P., Foba-Tendo, J., Ngolui, L.J., Namondo, B.V., Yollande, F.C. and Nguimezong, M.B.N. (2018) Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified Oxalate Route. Journal of Nanomaterials, 2018, Article ID: 9072325.
https://doi.org/10.1155/2018/9072325
[34]  Mahmed, N., Heczko, O., Söderberg, O. and Hannula, S.P. (2011) Room Temperature Synthesis of Magnetite (Fe3-δO4) Nanoparticles by a Simple Reverse Co-Precipitation Method. IOP Conference Series: Materials Science and Engineering, 18, Article ID: 032020.
https://doi.org/10.1088/1757-899X/18/3/032020

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413