全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2023 

Experimental Analysis of Hydraulic Conductivity for Saturated Granular Soils

DOI: 10.4236/gm.2023.133006, PP. 71-90

Keywords: Permeability, Hydraulic Conductivity, Tests, Saturated Granular Soils, Prediction Approaches

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper presents the test results of the vertical hydraulic conductivity kv carried out on one poorly graded sand and three gap graded gravely sand. It was found that the vertical hydraulic conductivity of saturated soil depends on the grain size distribution curve, on the initial relative density of the soil. Compilation of these current test results and other test results published, shows that the common approaches predict well to some extent the vertical hydraulic conductivity kv for the poorly graded sand materials and underestimate the kv values for gap graded gravely sand materials. Therefore, new approaches are developed for the prediction of the vertical hydraulic conductivity in saturated poorly graded sand and gap graded gravely sand. The derived results from the new approaches lie in the range of the recommended values by (EAU 2012) and (NAVFAC DM 7 1974).

References

[1]  Chapuis, R.P. and Gill, D.F. (1989) Hydraulic Anisotropy of Homogeneous Soils and Rocks: Influence of the Densification Process. Bulletin of International Association of Engineering Geology, 39, 75-86.
https://doi.org/10.1007/BF02592538
[2]  Cedergren, H.R. (1967) Seepage, Drainage, and Flow Nets. Wiley, New York.
[3]  Terzaghi, K. and Peck, R.B. (1964) Soil Mechanics in Engineering Practice. Wiley, New York, 14.
[4]  Chapuis, R.P. (2012) Predicting the Saturated Hydraulic Conductivity of Soils: A Review. Bulletin of Engineering Geology and the Environment, 71, 401-434.
https://doi.org/10.1007/s10064-012-0418-7
[5]  Darcy, H. (1856) Les fontaines de la ville de Dijon. Dalmont, Paris.
[6]  Kunze, R.J., Uehara, G. and Graham, K. (1968) Factors Important in the Calculation of Hydraulic Conductivity. Soil Science Society of America Journal, 32, 760-765.
https://doi.org/10.2136/sssaj1968.03615995003200060020x
[7]  Costa, A. (2006) Permeability-Porosity Relationship: A Reexamination of the Kozeny-Carman Equation Based on a Fractal Pore-Space Geometry Assumption. Geophysical Research Letters, 33.
https://doi.org/10.1029/2005GL025134
[8]  Ghanbarian-Alavijeh, B., Liaghat, A.M. and Sohrabi, S. (2010) Estimating Saturated Hydraulic Conductivity from Soil Physical Properties Using Neural Network Model. World Academy of Science, Engineering and Technology, 62, 131-136.
[9]  Van de Genachte, G., Mallants, D., Ramos, J., Deckers, J.A. and Feyen, J. (1996) Estimating Infiltration Parameters from Basic Soil Properties. Hydrological Processes, 10, 687-701.
https://doi.org/10.1002/(SICI)1099-1085(199605)10:5<687::AID-HYP311>3.0.CO;2-P
[10]  Pachepsky, Y.A., Timlin, D. and Varallyay, G. (1996) Artificial Neural Networks to Estimate Soil Water Retention from Easily Measurable Data. Soil Science Society of American Journal, 60, 727-733.
https://doi.org/10.2136/sssaj1996.03615995006000030007x
[11]  Erzin, Y., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2009) Artificial Neural Network (ANN) Models for Determining Hydraulic Conductivity of Compacted Fine-Grained Soils. Canadian Geotechnical Journal, 46, 955-968.
https://doi.org/10.1139/T09-035
[12]  Silveira, A. (1965) An Analysis of the Problem of Washing through in Protective Filters. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, 8-15 September 1965, 51-555.
[13]  Wittmann, L. (1980) Filtrations—und Transportphänomene in porösen Medien. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Germany.
[14]  Juang, C.H. and Holtz, R.D. (1986) Fabric, Pore Size Distribution and Permeability of Sandy Soils. Journal of Geotechnical Engineering, 112, 855-868.
https://doi.org/10.1061/(ASCE)0733-9410(1986)112:9(855)
[15]  Witt, K.J. (1986) Filtrationsverhalten und Bemessung von Erdstoff-Filtern. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Germany.
[16]  Xiong, Q., Baychev, T.G. and Jivkov, A.P. (2016) Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport. Journal of Contaminant Hydrology, 192, 101-117.
https://doi.org/10.1016/j.jconhyd.2016.07.002
[17]  De Vries, E.T., Raoof, A. and van Genuchten, M.T. (2017) Multiscale Modelling of Dual-Porosity Porous Media; a Computational Pore-Scale Study for Flow and Solute Transport. Advances in Water Resources, 105, 82-95.
https://doi.org/10.1016/j.advwatres.2017.04.013
[18]  Ahlinhan, M.F. and Adjovi, C.D. (2019) Combined Geometric Hydraulic Criteria Approach for Piping and Internal Erosion in Cohesionless Soils. Geotechnical Testing Journal, 42, 180-193.
https://doi.org/10.1520/GTJ20170096
[19]  Hazen, A. (1892) Some Physical Properties of Sands and Gravels, with Special Reference to their Use in Filtration. 24th Annual Report. Massachusetts State Board of Health, USA, 539-556.
[20]  Hazen, A. (1911) Discussion of “Dams on Sand Foundations” by A. C. Koenig. Transactions of the American Society of Civil Engineers, 73, 199-203.
[21]  Carrier, W.D. (2003) Goodbye, Hazen; Hello, Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering, 129, 1054-1056.
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054)
[22]  Kozeny, J. (1927) Uber Kapillare Leitung Des Wassers in Boden. Sitzungsber Akad. 271-306. (In German).
[23]  Carman, P.C. (1937) Fluid Flow through Granular Beds. Transactions of the Institution of Chemical Engineers, 15.
[24]  Carman, P.C. (1956) Flow of Gases through Porous Media. Butterworths Scientific Publications, London, 5.
[25]  Lambe, T.W. (1965) Soil Testing for Engineers. Wiley, New York.
[26]  Terzaghi, K., Peck, R.B. and Mesri, G. (1996) Soil Mechanics in Engineering Practice. Wiley, New York.
[27]  Santamarina, J.C. and Cho, G.C. (2004) Soil Behaviour: The Role of Particle Shape. In: Jardine, R.J., Potts, D.M. and Higgins, K.G., Eds., Advances in Geotechnical Engineering: The Skempton Conference, Vol. 1, Tho mas Telford, London, 604-617.
[28]  Cho, G.-C., Dodds, J. and Santamarina, J.C. (2006) Particle Shape Effects on Packing Density, Stiffness and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602.
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
[29]  Fair, G.M. and Hatch, L.P. (1933) Fundamental Factors Governing the Streamline Flow of Water through Sand. Journal AWWA, 25, 1551-1565.
https://doi.org/10.1002/j.1551-8833.1933.tb18342.x
[30]  Loudon, A.G. (1952) The Computation of Permeability from Simple Soil Tests. Géotechnique, 3, 165-183.
https://doi.org/10.1680/geot.1952.3.4.165
[31]  (2006) ASTM D2434-19, Standard Test Method for Permeability of Granular Soils (Constant Head).
https://www.astm.org/d2434-19.html
[32]  Chapuis, R.P., Gill, D.F. and Bass, K. (1989) Laboratory Permeability Tests on Sand: Influence of the Compaction Method on Anisotropy. Canadian Geotechnical Testing Journal, 26, 614-622.
https://doi.org/10.1139/t89-074
[33]  Hassler, G.L., Rice, R.R. and Leeman, E.M. (1936) Investigations on the Recovery of Oil from Sandstone by Gas-Drive. Transactions of the AIME, 118, 116-137.
https://doi.org/10.2118/936116-G
[34]  Houpeurt, A. (1974) Mécanique des fluides dans les milieux poreux—Critiques et recherches. TECHNIP, Paris.
[35]  Christiansen, J.E. (1944) Effect of Entrapped Air upon the Permeability of Soils. Soil Science, 58, 355-365.
https://doi.org/10.1097/00010694-194411000-00002
[36]  Pillsbury, A.F. (1950) Effects of Particle Size and Temperature on the Permeability of Sand to Water. Soil Science, 70, 299-300.
https://doi.org/10.1097/00010694-195010000-00005
[37]  Chapuis, R.P., Gill, D.F. and Bass, K. (1991) Laboratory Permeability Tests on Sand: Influence of the Compaction Method on Anisotropy, Reply. Canadian Geotechnical Testing Journal, 28, 172-173.
https://doi.org/10.1139/t91-022
[38]  Chapuis, R.P. and Aubertin, M. (2003) Predicting the Coefficient of Permeability of Soils Using Kozeny-Carman Equation. EPM-RT-2003-03. Department CGM, Ecole Polytechnique de Montréal, Montreal.
[39]  Den Adel, H., Bakker, K.J. and Breteler, M.K. (1988) Internal Stability of Minestone. In: Kolkman, P.A., Lindenberg, J. and Pilarczyk, K.W., Eds., Modelling Soil-Water-Structure Interactions, Balkema, Rotterdam, 225-231.
[40]  Skempton, A.W. and Brogan, J.M. (1994) Experiments on Piping in Sandy Gravels. Géotechnique, 44, 449-460.
https://doi.org/10.1680/geot.1994.44.3.449
[41]  NAVFAC DM7 (1974) Naval Facilities Engineering Command. In: Design Manual Soil Mechanics, Foundations and Earth Structures, United States Government Printing Office, Washington DC.
[42]  EAU (2012) Recommendations of the Committee for Waterfront Structures Harbours and Waterways.11th Edition, Ernst & Sohn, Berlin.
[43]  ASTM (2011) Standard D2434—Permeability of Granular Soils (Constant Head). In: ASTM annual CDs of Standards, ASTM International, West Conshohocken.
[44]  ASTM (2011) Standard D5084—Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. In: ASTM annual CDs of Standards, ASTM International, West Conshohocken.
[45]  ASTM (2011) Standard D5856—Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall Compaction-Mold Permeameter. In: ASTM Annual CDs of Standards, ASTM International, West Conshohocken.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413