全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

根系分泌碳输入对刺槐凋落叶细菌群落结构的影响
Effects of Root Exudation Carbon Inputs on the Structure of Bacterial Microbial Communities during Symplocos Lucida Litter Decomposition

DOI: 10.12677/HJSS.2023.113020, PP. 157-167

Keywords: 根系分泌碳,凋落叶,分解,细菌群落结构
Root Exudation Carbon
, Leaf Litter, Decomposition, Bacteria Microbial Community

Full-Text   Cite this paper   Add to My Lib

Abstract:

为深入理解根系分泌碳输入对凋落物分解细菌群落的调节作用,在刺槐凋落叶分解环境中添加不同浓度的模拟根系分泌物碳溶液(每g土壤添加CK 0 mg、L 0.27 mg、M 0.54 mg、H 1.08 mg碳),通过45 d的室内培养后,采用16S rRNA测序研究外源根系分泌碳对刺槐凋落叶表面细菌群落的影响。结果表明:1) 各处理间细菌群落的丰富度无差异,但中、高浓度(M和H)的分泌碳输入显著提高了其多样性。2) 变形菌门(Proteobacteria)、浮霉状菌门(Planctomycetes)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和酸杆菌门(Acidobacteria)是刺槐凋落物的主要分解细菌类群。3) 变形菌门和放线菌门的丰度对于分泌碳输入浓度的响应特征具有低促高抑的现象;同时较高浓度的根系分泌碳输入处理(H)促进了拟杆菌门的繁殖。4) 刺槐凋落叶表面细菌功能群以化学异养和好氧化学异养为主,固氮类、碳氢化合物降解类和纤维素分解类功能基因的丰度随着输入分泌碳浓度的增加而逐步提高。研究结果有助于理解根系分泌物对凋落物降解细菌群落的影响机制,为深入揭示根系–微生物–凋落物降解互作效应提供一定理论依据。
To understand how root exudates influence litter decomposition in forest ecosystems, different concentrations of simulated root exudate carbon solutions (CK 0, L 0.27, M 0.54, H 1.08 mg C per gram of soil) were added to the Symplocos lucida litter decomposition environment. After 45 days of laboratory incubation, the impact of different carbon input levels on the bacterial community was assessed using 16S rRNA sequencing. The results showed that: 1) There was no significant difference in the richness of bacterial communities among the treatments, but the input of medium and high concentrations (M and H) of exudate carbon significantly increased their diversity. 2) Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, and Acidobacteria were the main bacterial phyla involved in the decomposition of Symplocos lucida litter. 3) The abundance of Proteobacteria and Actinobacteria exhibited a low promotion-high inhibition response to the concentration of exudate carbon input. Additionally, the higher concentration of root exudate carbon input (H) promoted the proliferation of Bacteroidetes. 4) The functional groups of bacteria on the surface of Symplocos lucida litter were primarily associated with chemoheterotrophy and aerobic chemoheterotrophy. The abundance of functional genes related to nitrogen fixation, hy-drocarbon degradation, and cellulolysis increased gradually with the increase in exudates carbon input concentration. Overall, these research findings contribute to the understanding of the mechanisms by which root exudates influence the bacterial community involved in litter decom-position. They also provide a theoretical basis for further revealing the interactions among roots, microorganisms, and litter decomposition processes.

References

[1]  Noguchi, K., Nagakura, J., Kon?pka, B., Sakata, T., Kaneko, S. and Takahashi, M. (2013) Fine-Root Dynamics in Sugi (Cryptomeria japonica) under Manipulated Soil Nitrogen Conditions. Plant and Soil, 364, 159-169.
https://doi.org/10.1007/s11104-012-1354-9
[2]  尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055-1070.
[3]  吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310.
[4]  de Graaff, M.A., Classen, A.T., Castro, H.F. and Schadt, C.W. (2010) Labile Soil Carbon Inputs Mediate the Soil Microbial Community Composition and Plant Residue Decomposition Rates. New Phytologist, 188, 1055-1064.
https://doi.org/10.1111/j.1469-8137.2010.03427.x
[5]  Yin, H., Li, Y., Xiao, J., Xu, Z., Cheng, X. and Liu, Q. (2013) Enhanced Root Exudation Stimulates Soil Nitrogen Transformations in a Subalpine Coniferous Forest under Experimental Warming. Global Change Biology, 19, 2158-2167.
https://doi.org/10.1111/gcb.12161
[6]  Lv, C., Wang, C., Cai, A. and Zhou, Z. (2023) Global Magnitude of Rhizosphere Effects on Soil Microbial Communities and Carbon Cycling in Natural Terrestrial Ecosystems. Science of the Total Environment, 856, Article ID: 158961.
https://doi.org/10.1016/j.scitotenv.2022.158961
[7]  Sayer, E.J., Tanner, E.V.J. and Cheesman, A.W. (2006) In-creased Litterfall Changes Fine Root Distribution in a Moist Tropical Forest. Plant and Soil, 281, 5-13.
https://doi.org/10.1007/s11104-005-6334-x
[8]  Wang, W., Hu, K., Huang, K. and Tao, J. (2021) Mechanical Fragmentation of Leaf Litter by Fine Root Growth Contributes Greatly to the Early Decomposition of Leaf Litter. Global Ecology and Conservation, 26, e01456.
https://doi.org/10.1016/j.gecco.2021.e01456
[9]  Wang, W., Wu, X., Hu, K., Liu, J. and Tao, J. (2016) Under-storey Fine Root Mass and Morphology in the Litter and Upper Soil Layers of Three Chinese Subtropical Forests. Plant and Soil, 406, 219-230.
https://doi.org/10.1007/s11104-016-2878-1
[10]  刘瑞强, 黄志群, 何宗明, 万晓华, 余再鹏, 郑璐嘉, 肖好燕. 根系去除对米老排和杉木凋落物分解的影响[J]. 林业科学, 2015, 51(9): 1-8.
[11]  Wu, L.K., Lin, X.M. and Lin, W.X. (2014) Advances and Perspective in Research on Plant-Soil-Microbe Interactions Mediated by Root Exudates. Chinese Journal of Plant Ecology, 38, 298-310.
https://doi.org/10.3724/SP.J.1258.2014.00027
[12]  胡凯, 陶建平, 黄科, 胡靖, 王微. 模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响[J]. 应用与环境生物学报, 2020, 26(2): 417-424.
[13]  胡凯, 陶建平, 何丹妮, 黄科, 王微. 林下植物根系对森林凋落物分解过程中微生物及酶活性的影响[J]. 应用生态学报, 2019, 30(6): 1993-2001.
[14]  de Graaff, M.A., Jastrow, J.D., Gillette, S., Johns, A. and Wullschleger, S.D. (2014) Differen-tial Priming of Soil Carbon Driven by Soil Depth and Root Impacts on Carbon Availability. Soil Biology and Bio-chemistry, 69, 147-156.
https://doi.org/10.1016/j.soilbio.2013.10.047
[15]  费裕翀, 叶义全, 郑宏, 路锦, 游云飞, 黄樱, 陈爱玲, 曹光球. 外源氮素调控C/N比对杉木林凋落叶细菌群落结构的影响[J]. 生态学报, 2021, 41(5): 2011-2023.
[16]  Liu, Y., Chen, L., Ma, T., Li, X., Zheng, M., Zhou, X., et al. (2023) EasyAmplicon: An Easy‐to‐Use, Open‐Source, Repro-ducible, and Community-Based Pipeline for Amplicon Data Analysis in Microbiome Research. iMeta, 2, e83.
https://doi.org/10.1002/imt2.83
[17]  Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. and Huttenhower, C. (2011) Metagenomic Biomarker Discovery and Explanation. Genome Biology, 12, R60.
https://doi.org/10.1186/gb-2011-12-6-r60
[18]  Louca, S., Parfrey, L.W. and Doebeli, M. (2016) Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science, 353, 1272-1277.
https://doi.org/10.1126/science.aaf4507
[19]  Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M.P. and Mommer, L. (2017) Root Biomass and Exudates Link Plant Diversity with Soil Bacterial and Fungal Biomass. Scientific Reports, 7, Article No. 44641.
https://doi.org/10.1038/srep44641
[20]  Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., Da Rocha, U.N., Shi, S., et al. (2018) Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nature Microbiology, 3, 470-480.
https://doi.org/10.1038/s41564-018-0129-3
[21]  Adamczyk, M., Rüthi, J. and Frey, B. (2021) Root Exudates In-crease Soil Respiration and Alter Microbial Community Structure in Alpine Permafrost and Active Layer Soils. Envi-ronmental Microbiology, 23, 2152-2168.
https://doi.org/10.1111/1462-2920.15383
[22]  Kuzyakov, Y., Hill, P.W. and Jones, D.L. (2007) Root Exudate Components Change Litter Decomposition in a Simulated Rhizosphere Depending on Temperature. Plant and Soil, 290, 293-305.
https://doi.org/10.1007/s11104-006-9162-8
[23]  Mitter, E.K., De Freitas, J.R. and Germida, J.J. (2017) Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 8, Article No. 849.
https://doi.org/10.3389/fmicb.2017.00849
[24]  冯慧琳, 徐辰生, 何欢辉, 曾强, 陈楠, 李小龙, 任天宝, 姬小明, 刘国顺. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 2021, 42(1): 422-432.
[25]  Ratzke, C., Barrere, J. and Gore, J. (2020) Strength of Species Interactions Determines Biodiversity and Stability in Microbial Communities. Nature Ecology & Evolution, 4, 376-383.
https://doi.org/10.1038/s41559-020-1099-4
[26]  路颖, 李坤, 梁强, 李传荣, 张彩虹. 泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响[J]. 生态学报, 2019, 39(9): 3175-3186.
[27]  Crawford, D.L. (1978) Lignocellulose Decomposition by Selected Streptomyces Strains. Applied and Environmental Microbiology, 35, 1041-1045.
https://doi.org/10.1128/aem.35.6.1041-1045.1978
[28]  Schimel, J.P. and Schaeffer, S.M. (2012) Microbial Control over Carbon Cycling in Soil. Frontiers in Microbiology, 3, Article No. 348.
https://doi.org/10.3389/fmicb.2012.00348
[29]  Xia, M., Talhelm, A.F. and Pregitzer, K.S. (2015) Fine Roots Are the Dominant Source of Recalcitrant Plant Litter in Sugar Maple-Dominated Northern Hardwood Forests. New Phytologist, 208, 715-726.
https://doi.org/10.1111/nph.13494
[30]  丁鹏元, 初里冰, 张楠, 王星, 王建龙. O池溶解氧水平对石化废水A/O工艺污染物去除效果和污泥微生物群落的影响[J]. 环境科学, 2015, 36(2): 604-611.
[31]  Lydell, C., Dowell, L., Sikaroodi, M., Gillevet, P. and Emerson, D. (2004) A Population Survey of Members of the Phylum Bacteroidetes Isolated from Salt Marsh Sediments along the East Coast of the United States. Microbial Ecology, 48, 263-273.
https://doi.org/10.1007/s00248-003-1068-x
[32]  Sul, W.J., Asuming-Brempong, S., Wang, Q., Tourlousse, D.M., Penton, C.R., Deng, Y., et al. (2013) Tropical Agricultural Land Management Influences on Soil Microbial Communities through Its Effect on Soil Organic Carbon. Soil Biology and Biochemistry, 65, 33-38.
https://doi.org/10.1016/j.soilbio.2013.05.007
[33]  Almonacid-Mu?oz, L., Herrera, H., Fuentes-Ramírez, A., Vargas-Gaete, R., Larama, G., Jara, R., Fernández-Urrutia, C. and da Silva Valadares, R.B. (2022) Tree Cover Species Modify the Diversity of Rhizosphere-Associated Microorganisms in Nothofagus obliqua (Mirb.) Oerst Temperate For-ests in South-Central Chile. Forests, 13, Article No. 756.
https://doi.org/10.3390/f13050756
[34]  Jia, Y. and Whalen, J.K. (2020) A New Perspective on Functional Re-dundancy and Phylogenetic Niche Conservatism in Soil Microbial Communities. Pedosphere, 30, 18-24.
https://doi.org/10.1016/S1002-0160(19)60826-X
[35]  Grz?dziel, J. (2017) Functional Redundancy of Soil Microbiota—Does More Always Mean Better? Polish Journal of Soil Science, 50, 75-81.
https://doi.org/10.17951/pjss.2017.50.1.75
[36]  Yang, Z., Peng, C., Cao, H., Song, J., Gong, B., Li, L., Wang, L., He, Y., Liang, M., Lin, J. and Lu, L. (2022) Microbial Functional Assemblages Predicted by the FAPROTAX Analysis Are Impacted by Physicochemical Properties, but C, N and S Cycling Genes Are Not in Mangrove Soil in the Beibu Gulf, China. Ecological Indicators, 139, Article ID: 108887.
https://doi.org/10.1016/j.ecolind.2022.108887
[37]  高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13): 4617-4627.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413