全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超临界态二氧化碳梳齿密封泄漏特性数值研究
Numerical Investigation on Flow Characteristics of Supercritical CO2 Labyrinth Seals

DOI: 10.12677/NST.2023.113032, PP. 305-315

Keywords: 超临界流体,二氧化碳,密封,数值分析
Supercritical Fluids
, Carbon Dioxide, Seals, Numerical Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

密封技术是一项关系到超临界二氧化碳(Supercritical carbon dioxide, S-CO2)核动力力系统中旋转机械能否高效、安全、可靠运行的关键技术。为尽可能地减小密封泄漏,使用数值计算的手段研究了超临界二氧化碳直通式梳齿密封的泄漏特性。首先,对密封的泄漏量进行无量纲化以便后续描述密封的泄漏特性。随后,研究了密封上下游滞止工况以及密封几何参数对密封泄漏的影响。计算结果显示:温度及压力等热力学参数对密封的无量纲泄漏量影响较小;减小密封间隙,增加密封腔长,减小密封齿宽均会改善密封泄漏性能;齿高对密封泄漏的影响是非线性的,存在最优值,该最优值在齿高比腔长约为0.13时出现;增加齿数同样可以减小密封泄漏量,但这一点无法反映在无量纲化后的泄漏量上。本文的研究表明:本文采用的无量纲泄漏量可以比较准确地反映密封结构和泄漏之间的关系;除了传统的梳齿密封所使用的减小密封泄漏的手段之外,对于结构紧凑的超临界二氧化碳梳齿密封来说,优化密封腔室结构,调整齿高也可以有效降低密封泄漏。
Sealing technology is a key technology related to the efficient, safe, and reliable operation of rotating machinery in supercritical carbon dioxidenuclear power systems. In order to reduce the seal leakage, the characteristics of the supercritical carbon dioxide see-through labyrinth seals are studied numerically. Firstly, a nondimensional leakage rate is used to describe the leakage characteristics of the seal. Then, the influence of the upstream and downstream conditions and the geometrical parameters on the seals’ leakage is studied. The results show that the thermodynamic parameters such as temperature and pressure have little influence on the nondimensional leakage rate. Reducing the sealing clearance, increasing the cavity length and decreasing the tooth width can improve the sealing leakage performance. The effect of tooth height on seal leakage is nonlinear, and there is an optimal value, which appears when the ratio of tooth height to cavity length is about 0.13. Increasing the number of teeth can also reduce the sealing leakage, but this didn’t be reflected in the nondimensional leakage rate. The calculation results show that the dimensionless leakage rate in this paper can accurately reflect the relationship between seal geometry and leakage. In addition to the methods of reducing the seal leakage by the traditional labyrinth seal, for the compact supercritical carbon dioxide labyrinth seal, optimizing the structure of the seal cavity and adjusting the tooth height can also effectively reduce the seal leakage.

References

[1]  Dostal, V., Hejzlar, P. and Driscoll, M.J. (2006) High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors. Nuclear Technology: A Journal of the American Nuclear Society, 154, 265-282.
https://doi.org/10.13182/NT154-265
[2]  Dostal, V., Hejzlar, P. and Driscoll, M.J. (2006) The Supercritical Car-bon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles. Nuclear Technology: A journal of the Ameri-can Nuclear Society, 154, 283-301.
https://doi.org/10.13182/NT06-A3734
[3]  Bae, S.J., Lee, J., Ahn, Y. and Lee, J.I. (2015) Preliminary Studies of Compact Brayton Cycle Performance for Small Modular High Temperature Gas-Cooled Reactor System. Annals of Nu-clear Energy, 75, 11-19.
https://doi.org/10.1016/j.anucene.2014.07.041
[4]  Conboy, T. (2013) An Approach to Turbomachinery for Su-percritical Brayton Space Power Cycles. Nuclear and Emerging Technologies for Space Topical Meeting (NETS 2013), Albuquerque, 25-28 February 2013, 124-131.
[5]  Iverson, B.D., Conboy, T.M., Pasch, J.J. and Kruizenga, A.M. (2013) Supercritical CO2 Brayton Cycles for Solar-Thermal Energy. Applied Energy, 111, 957-970.
https://doi.org/10.1016/j.apenergy.2013.06.020
[6]  Fuller, R., Preuss, J. and Noall, J. (2012) Turbomachinery for Supercritical CO2 Power Cycles. Proceedings of the ASME Turbo Expo 2012, Copenhagen, 11-15 June 2012, 961-966.
https://doi.org/10.1115/GT2012-68735
[7]  Martin, H.M. (1908) Labyrinth Packings. Engineering, 85, 35-36.
[8]  Egli, A. (1935) The Leakage of Steam through Labyrinth Seals. Transactions of the American Society of Mechanical Engineers, 57, 115-122.
https://doi.org/10.1115/1.4019911
[9]  Hodkinson, B. (1939) Estimation of the Leakage through a Labyrinth Gland. Proceedings of the Institution of Mechanical Engineers, 141, 283-288.
https://doi.org/10.1243/PIME_PROC_1939_141_037_02
[10]  Vermes, G. (1961) A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem. Journal of Engineering for Gas Turbines and Power, 83, 161-169.
https://doi.org/10.1115/1.3673158
[11]  Cho, J., Choi, M., Baik, Y.J., et al. (2016) Development of the Tur-bomachinery for the Supercritical Carbon Dioxide Power Cycle. International Journal of Energy Research, 40, 587-599.
https://doi.org/10.1002/er.3453
[12]  Clementoni, E.M., Cox, T.L. and King, M.A. (2016) Off-Nominal Component Performance in a Supercritical Carbon Dioxide Brayton Cycle. Journal of Engineering for Gas Turbines and Power, 138, Article ID: 011703.
https://doi.org/10.1115/1.4031182
[13]  Yuan, H.M, Pidaparti, S., Wolf, M., Edlebeck, J. and Anderson, M. (2015) Numerical Modeling of Supercritical Carbon Dioxide Flow in See-through Labyrinth Seals. Nuclear Engineering and Design, 293, 436-446.
https://doi.org/10.1016/j.nucengdes.2015.08.016
[14]  Kim, M.S., Bae, S.J., Son, S., Oh, B.S. and Lee, J.I. (2019) Study of Critical Flow for Supercritical CO2 Seal. International Journal of Heat and Mass Transfer, 138, 85-95.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.040
[15]  Zhang, E.B., Xu, H.C., Li, J. and Bai, B.F. (2022) Turbulence Dissipation of Leakage Flow in Supercritical CO2 Labyrinth Seals. Progress in Nuclear Energy, 151, Article ID: 104336.
https://doi.org/10.1016/j.pnucene.2022.104336
[16]  Li, Z.G., Li, Z.C., Li, J. and Feng, Z.P. (2021) Leakage and Rotordynamic Characteristics for Three Types of Annular Gas Seals Operating in Supercritical CO2 Tur-bomachinery. Journal of Engineering for Gas Turbines and Power, 143, Article ID: 101002.
https://doi.org/10.1115/1.4051104
[17]  王伟光, 周源, 黄彦平, 曾成天. 超临界态二氧化碳直通式梳齿密封数值研究[J]. 应用物理, 2022, 12(7): 431-438.
https://doi.org/10.12677/APP.2022.127050
[18]  Aungier, R.H. (1995) A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications. Journal of Fluids Engineering, 117, 277-281.
https://doi.org/10.1115/1.2817141

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413