全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Density Functional Study of Mechanical, Electronic and Pressure Induced Phase Transition Properties of CaFé2As2

DOI: 10.4236/ojm.2023.133004, PP. 36-51

Keywords: Phase Transition, Elastic Constants, Modulus

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe2As2 and its phase transition under pressure using Quantum Espresso code. We do analysis of the strength of bonds in individual points of this material and proper Cauchy pressure calculation which will give more insight on the elastic responses. Ground state energy was done in the framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) and ultrasoft pseudo potential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) generalized gradient approximation and local density approximations. Elastic constants were computed using thermo_pw and the values were used to calculate mechanical properties and pressure phase changes. From the non-zero positive elastic constants, the Iron Pnictide compound is found to be mechanically stable and its Poisson’s ratio indicates that it is brittle and isotropic. Pressure induced phase transition is here found to happen at an applied external pressure of 0.2 GPa causing the tetragonal phase to change to an orthorhombic phase which agrees well with previous reports.

References

[1]  Capitani, F., Langerome, B., Brubach, J.-B., Roy, P., Drozdov, A., Eremets, M., et al. (2017) Spectroscopic Evidence of a New Energy Scale for Superconductivity in H3S. Nature Physics, 13, 859-863.
https://doi.org/10.1038/nphys4156
[2]  Shrivastava, S.K. and Kumar, G. (2019) High-tc Superconductivity in Iron-Based Pnictides and Chalcogenides. International Journal of Emerging Technologies and Innovative Research, 6, 417-426.
[3]  Hosono, H., Tanabe, K., Takayama-Muromachi, E., Kageyama, H., Yamanaka, S., Kumakura, H., et al. (2015) Exploration of New Superconductors and Functional Materials, and Fabrication of Superconducting Tapes and Wires of Iron Pnictides. Science and Technology of Advanced Materials, 16, Article ID: 033503.
https://doi.org/10.1002/chin.201540228
[4]  Soliman, S. (2016) The Stacking of Antifluorite Fe2P2 Layer on the Electronic Structure of the Ternary Compounds CaFe2P2, BaFe2P2 and EuFe2P2. Computational Materials Science, 122, 177-182.
https://doi.org/10.1016/j.commatsci.2016.05.027
[5]  Cui, J. (2017) Studies of Energy-Relevant Materials by Nuclear Magnetic Resonance. Iowa State University, Ames.
https://doi.org/10.2172/1417981
[6]  Bud’ko, S.L., Ma, X., Tomić, M., Ran, S., Valentí, R. and Canfield, P.C. (2016) Transition to Collapsed Tetragonal Phase in CaFe2As2 Single Crystals as Seen by 57Fe Mössbauer Spectroscopy. Physical Review B, 93, Article ID: 024516.
https://doi.org/10.1103/PhysRevB.93.024516
[7]  Sanna, A., Profeta, G., Massidda, S. and Gross, E. (2014) First-Principles Study of Superconducting Rare-Earth Doped CaFe2As2. Physical Review B, 86, Article ID: 014507.
[8]  Polyakov, A. (2013) Fermi-Surface Investigations of Rare-Earth Transition-Metal Compounds.
[9]  Dhaka, R., Jiang, R., Ran, S., Bud’ko, S.L., Canfield, P.C., Harmon, B.N., et al. (2014) Dramatic Changes in the Electronic Structure upon Transition to the Collapsed Tetragonal Phase in CaFe2As2. Physical Review B, 89, Article ID: 020511.
https://doi.org/10.1103/PhysRevB.89.020511
[10]  Mishra, S., Mittal, R., Krishna, P., Sastry, P., Chaplot, S., Babu, P., et al. (2013) Evidence for Anomalous Structural Behavior in CaFe2As2.
[11]  Sidorov, V., Lu, X., Park, T., Lee, H., Tobash, P., Baumbach, R., et al. (2013) Pressure Phase Diagram and Quantum Criticality of CePt2In7 Single Crystals. Physical Review B, 88, Article ID: 020503.
https://doi.org/10.1103/PhysRevB.88.020503
[12]  Saparov, B., Cantoni, C., Pan, M., Hogan, T.C., Ii, W.R., Wilson, S.D., et al. (2014) Complex Structures of Different CaFe2As2 Samples. Scientific Reports, 4, Article No. 4120.
https://doi.org/10.1038/srep04120
[13]  Shahi, P., Sun, J., Wang, S., Jiao, Y., Chen, K., Sun, S., et al. (2018) High-Tc Superconductivity up to 55 K under High Pressure in a Heavily Electron Doped Li0.36(NH3)yFe2Se2Single Crystal. Physical Review B, 97, Article ID: 020508.
https://doi.org/10.1103/PhysRevB.97.020508
[14]  Parvin, F. and Naqib, S. (2019) Structural, Elastic, Electronic, Thermodynamic, and Optical Properties of Layered BaPd2As2 Pnictide Superconductor: A First Principles Investigation. Journal of Alloys and Compounds, 780, 452-460.
https://doi.org/10.1016/j.jallcom.2018.12.021
[15]  Materne, P., Kamusella, S., Sarkar, R., Goltz, T., Spehling, J., Maeter, H., et al. (2015) Coexistence of Superconductivity and Magnetism in Ca1-xNaxFe2As2: Universal Suppression of the Magnetic Order Parameter in 122 Iron Pnictides. Physical Review B, 92, Article ID: 134511.
https://doi.org/10.1103/PhysRevB.92.134511
[16]  Idrissi, S., Labrim, H., Bahmad, L. and Benyoussef, A. (2021) DFT and TDDFT Studies of the New Inorganic Perovskite CsPbI3 for Solar Cell Applications. Chemical Physics Letters, 766, Article ID: 138347.
https://doi.org/10.1016/j.cplett.2021.138347
[17]  Idrissi, S., Mounkachi, O., Bahmad, L. and Benyoussef, A. (2022) Study of the Electronic and Opto-Electronic Properties of the Perovskite KPbBr3 by DFT and TDDFT Methods. Computational Condensed Matter, 33, e00617.
https://doi.org/10.1016/j.cocom.2021.e00617
[18]  Felipe, H., Qiu, D.Y. and Louie, S.G. (2017) Nonuniform Sampling Schemes of the Brillouin Zone for Many-Electron Perturbation-Theory Calculations in Reduced Dimensionality. Physical Review B, 95, Article ID: 035109.
https://doi.org/10.1103/PhysRevB.95.035109
[19]  Sypek, J.T., Yu, H., Dusoe, K.J., Drachuck, G., Patel, H., Giroux, A.M., et al. (2017) Superelasticity and Cryogenic Linear Shape Memory Effects of CaFe2As2. Nature Communications, 8, Article No. 1083.
https://doi.org/10.1038/s41467-017-01275-z
[20]  Hadi, M., Roknuzzaman, M., Chroneos, A., Naqib, S., Islam, A., Vovk, R., et al. (2017) Elastic and Thermodynamic Properties of New (Zr3-xTix)AlC2 MAX-Phase Solid Solutions. Computational Materials Science, 137, 318-326.
https://doi.org/10.1016/j.commatsci.2017.06.007
[21]  Sangeetha, N., Smetana, V., Mudring, A.-V. and Johnston, D. (2018) Antiferromagnetism in Semiconducting SrMn2Sb2 and BaMn2Sb2 Single Crystals. Physical Review B, 97, Article ID: 014402.
https://doi.org/10.1103/PhysRevB.97.014402
[22]  Biskri, Z.E., Rached, H., Bouchear, M. and Rached, D. (2014) Computational Study of Structural, Elastic and Electronic Properties of Lithium Disilicate (Li2Si2O5) Glass-Ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 32, 345-350.
https://doi.org/10.1016/j.jmbbm.2013.10.029
[23]  Luan, X., Qin, H., Liu, F., Dai, Z., Yi, Y. and Li, Q. (2018) The Mechanical Properties and Elastic Anisotropies of Cubic Ni3Al from First Principles Calculations. Crystals, 8, Article No. 307.
https://doi.org/10.3390/cryst8080307
[24]  Toher, C., Plata, J.J., Levy, O., De Jong, M., Asta, M., Nardelli, M.B., et al. (2014) High-Throughput Computational Screening of Thermal Conductivity, Debye Temperature, and Grüneisen Parameter Using a Quasiharmonic Debye Model. Physical Review B, 90, Article ID: 174107.
https://doi.org/10.1103/PhysRevB.90.174107
[25]  Rabah, M., Benalia, S., Rached, D., Abidri, B., Rached, H. and Vergoten, G. (2010) Prediction of Stabilities Phase and Elastic Properties of Palladium Carbide. Computational Materials Science, 48, 556-562.
https://doi.org/10.1016/j.commatsci.2010.02.023
[26]  Zhang, Y. and Zhang, J. (2014) First Principles Study of Structural and Thermodynamic Properties of Zirconia. Materials Today: Proceedings, 1, 44-54.
https://doi.org/10.1016/j.matpr.2014.09.011
[27]  Jayasekara, W., Pandey, A., Kreyssig, A., Sangeetha, N., Sapkota, A., Kothapalli, K., et al. (2017) Suppression of Magnetic Order in CaCo1.86As2 with Fe Substitution: Magnetization, Neutron Diffraction, and X-Ray Diffraction Studies of Ca(Co1-xFex)yAs2. Physical Review B, 95, Article ID: 064425.
[28]  Wei, F., Lv, B., Deng, L., Meen, J.K., Xue, Y.-Y. and Chu, C.-W. (2014) The Unusually High Tc in Rare-Earth-Doped Single Crystalline CaFe2As2. Philosophical Magazine, 94, 2562-2570.
https://doi.org/10.1080/14786435.2014.913116
[29]  Li, J., Yu, J., Wu, S. and Xie, J. (2022) The Mechanical Resistance of Asphalt Mixture with Steel Slag to Deformation and Skid Degradation Based on Laboratory Accelerated Heavy Loading Test. Materials, 15, Article No. 911.
https://doi.org/10.3390/ma15030911
[30]  Kvashnina, Y.A., Kvashnin, A., Popov, M.Y., Kulnitskiy, B., Perezhogin, I., Tyukalova, E., et al. (2015) Toward the Ultra-Incompressible Carbon Materials. Computational Simulation and Experimental Observation. The Journal of Physical Chemistry Letters, 6, 2147-2152.
https://doi.org/10.1021/acs.jpclett.5b00748
[31]  Zaddach, A., Niu, C., Koch, C. and Irving, D. (2013) Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. Jom, 65, 1780-1789.
https://doi.org/10.1007/s11837-013-0771-4
[32]  Jayalakshmi, D., Sundareswari, M., Viswanathan, E., Hemanand, D. and Pranesh, V. (2019) Computational Study on Unconventional Superconductivity and Mechanical Properties of Novel Antiferrromagnetic (Ca, Sr, Ba) Fe2Bi2 Compounds. International Journal of Modern Physics B, 33, Article ID: 1950341.
https://doi.org/10.1142/S0217979219503417
[33]  Rahman, M.A., Rahaman, M.Z. and Rahman, M.A. (2016) The Structural, Elastic, Electronic and Optical Properties of MgCu under Pressure: A First-Principles Study. International Journal of Modern Physics B, 30, Article ID: 1650199.
https://doi.org/10.1142/S021797921650199X
[34]  Idrissi, S., Labrim, H., Bahmad, L. and Benyoussef, A. (2021) Study of the Solar Perovskite CsMBr3 (M = Pb or Ge) Photovoltaic Materials: Band-Gap Engineering. Solid State Sciences, 118, Article ID: 106679.
https://doi.org/10.1016/j.solidstatesciences.2021.106679
[35]  Islam, J. and Hossain, A.A. (2021) Investigation of Physical and Superconducting Properties of Newly Synthesized CaPd2P2 and SrPd2P2. Journal of Alloys and Compounds, 868, Article ID: 159199.
https://doi.org/10.1016/j.jallcom.2021.159199
[36]  Ali, K. and Maiti, K. (2017) Emergent Electronic Structure of CaFe2As2. Scientific Reports, 7, Article No. 6298.
https://doi.org/10.1038/s41598-017-06591-4
[37]  Agora, J.O., Otieno, C., Nyawere, P.W. and Manyali, G.S. (2020) Ab Initio Study of Pressure Induced Phase Transition, Structural and Electronic Structure Properties of Superconducting Perovskite Compound GdBa2Cu3O7-x. Computational Condensed Matter, 23, e00461.
https://doi.org/10.1016/j.cocom.2020.e00461
[38]  Chen, D.-Y., Yu, J., Ruan, B.-B., Guo, Q., Zhang, L., Mu, Q.-G., et al. (2016) Superconductivity in Undoped CaFe2As2 Single Crystals. Chinese Physics Letters, 33, Article ID: 067402.
https://doi.org/10.1088/0256-307X/33/6/067402
[39]  Nyawere, P.W.O., Makau, N.W. and Amolo, G.O. (2014) First Principles Calculation of Elastic Constants of Cubic, Orthorhombic and Hexagonal Phases of BaF2. Physica B, 434, 122-128.
https://doi.org/10.1016/j.physb.2013.10.051

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133