全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resistance of Klebsiella to Imipenem by Production of Carbapenemase Gene blaIMP at Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso

DOI: 10.4236/ijcm.2023.148030, PP. 347-356

Keywords: Klebsiella, Resistance, blaIMP Genes, β-lactam, Burkina Faso

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: Class B carbapenemases are bacterial enzymes that catalyze the hydrolysis of β-lactam core antibiotics, except for monobactams. The objective of this study was to identify the carbapenemase gene blaIMP in the genus Klebsiella at the Charles De Gaulle Pediatric University Hospital (CHUP-CDG) of Ouagadougou, Burkina Faso. Methods: The study involved 17 bacterial strains responsible for human infection and isolated from various biological samples during the period from 2009 to 2013. The strains were tested for antimicrobial susceptibility to cefotaxime, ceftazidime and imipenem using the Mueller-Hinton agar diffusion method. The carbapenemases resistance genes were detected by conventional PCR using specific primers at the molecular biology laboratory of CERBA/LABIOGENE, Ouagadougou, Burkina Faso. Results: The antibiotic susceptibility test showed high resistance of the 17 Klebsiella isolates tested to cephalosporins. A high cefotaxime-resistance rate (82.35%) and ceftazidime-resistance rate (88.23%) was found among the strains tested against 11.76% resistance rate for imipenem. Analysis of PCR products by gel electrophoresis revealed 4 strains (23.53%) with blaIMP-type gene. Conclusion: Klebsiella is a well-known bacterium in clinical practice. The present study demonstrated the blaIMP-type gene in cephalosporin-resistant strains of Klebsiella at CHUP-CDG. More effective monitoring and treatment solutions are needed to prevent the spread of these resistant strains.

References

[1]  Podschun, R. and Ullmann, U. (1998) Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clinical Microbiology Reviews, 11, 589-603.
https://doi.org/10.1128/CMR.11.4.589
[2]  Herridge, W.P., Shibu, P., O’Shea, J., Brook, T.C. and Hoyles, L. (2020) Bacteriophages of Klebsiella spp., Their Diversity and Potential Therapeutic Uses. Journal of Medical Microbiology, 19, 176-194.
[3]  Broberg, C.A., Palacios, M. and Miller, V.L. (2014) Klebsiella: A Long way to Go towards Understanding This Enigmatic Jet-Setter. F1000Prime Reports, 6, Article No. 64.
https://doi.org/10.12703/P6-64
[4]  CA-SFM-EUCAST (2021) Comité de l’antibiogramme de la Société Française de Microbiologie.
https://www.sfm-microbiologie.org/wp-content/uploads/2021/04/CASFM2021__V1.0.AVRIL_2021.pdf
[5]  Hall, B.G. and Barlow, M. (2005) Revised Ambler Classification of β-Lactamases. Journal of Antimicrobial Chemotherapy, 55, 1050-1051.
https://doi.org/10.1093/jac/dki130
[6]  Bush, K. and Jacoby, G.A. (2010) Updated Functional Classification of β-Lactamases. Antimicrobial Agents and Chemotherapy, 54, 969-976.
https://doi.org/10.1128/AAC.01009-09
[7]  Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T. and Daikos, G.L. (2012) Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clinical Microbiology Reviews, 25, 682-707.
https://doi.org/10.1128/CMR.05035-11
[8]  Cantón, R., Akóva, M., Carmeli, Y., Giske, C.G., Glupczynski, Y., Gniadkowski, M., Livermore, D.M., Miriagou, V., Naas, T., Rossolini, G.M., Samuelsen, Ø., Seifert, H., Woodford, N. and Nordmann, P. (2012) Rapid Evolution and Spread of Carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 18, 413-431.
https://doi.org/10.1111/j.1469-0691.2012.03821.x
[9]  Lascols, C., Peirano, G., Hackel, M., Laupland, K.B. and Pitout, J.D.D. (2013) Surveillance and Molecular Epidemiology of Klebsiella pneumoniae Isolates That Produce Carbapenemases: First Report of OXA-48-Like Enzymes in North America. Antimicrobial Agents and Chemotherapy, 57, 130-136.
https://doi.org/10.1128/AAC.01686-12
[10]  Manenzhe, R.I., Zar, H.J., Nicol, M.P. and Kaba, M. (2015) The Spread of Carbapenemase-Producing Bacteria in Africa: A Systematic Review. Journal of Antimicrobial Chemotherapy, 70, 23-40.
https://doi.org/10.1093/jac/dku356
[11]  Dembélé, R., Soulama, I., Kaboré, W.A.D., Konaté, A., Kagambèga, A., N’Golo, D.C., Traoré, O., Seck, A., Traoré, A.S., Guessennd, N.K., Gassama-Sow, A. and Barro, N. (2021) Molecular Characterization of Carbapenemase-Producing Enterobacteralesin Children with Diarrhea in Rural Burkina Faso. Journal of Drug Delivery and Therapeutics, 11, 84-92.
https://doi.org/10.22270/jddt.v11i1.4513
[12]  Mètuor, A. (2014) Caractérisations moléculaire et cinétique des types de β-lactamases à spectre élargi (BLSE) de souches bactériennes collectées au Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle (CHUP-CDG) de Ouagadougou. Université de Ouagadougou, Ouagadougou.
[13]  Mètuor, D.A., Tiemtoré, R.Y.W.-K., Bangré, Y.A., Zohoncon, T.M., Sougué, S., Zongo, J.K. and Simporé, J. (2019) Detection of Multidrug-Resistant Enterobacteria Simultaneously Producing Extended-Spectrum Î2-Lactamases of the PER and GES Types Isolated at Saint Camille Hospital Center, Ouagadougou, Burkina Faso. African Journal of Microbiology Research, 13, 414-420.
https://doi.org/10.5897/AJMR2019.9147
[14]  Huang, S., Dai, W., Sun, S., Zhang, X. and Zhang, L. (2012) Prevalence of Plasmid-Mediated Quinolone Resistance and Aminoglycoside Resistance Determinants among Carbapeneme Non-Susceptible Enterobacter cloacae. PLOS ONE, 7, e47636.
https://doi.org/10.1371/journal.pone.0047636
[15]  Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P. (2005) Metallo-β-Lactamases: The Quiet before the Storm? Clinical Microbiology Reviews, 18, 306-325.
https://doi.org/10.1128/CMR.18.2.306-325.2005
[16]  Pitout, J.D.D., Nordmann, P. and Poirel, L. (2015) Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrobial Agents and Chemotherapy, 59, 5873-5884.
https://doi.org/10.1128/AAC.01019-15
[17]  Martinez, J.L. (2014) General Principles of Antibiotic Resistance in Bacteria. Drug Discovery Today, 11, 33-39.
https://doi.org/10.1016/j.ddtec.2014.02.001
[18]  Ahoyo, A.T., Baba-Moussa, L., Anago, A.E., Avogbe, P., Missihoun, T.D., Loko, F., Prévost, G., Sanni, A. and Dramane, K. (2007) Incidence d’infections liées à Escherichia coli producteur de bêta lactamase à spectre élargi au Centre hospitalier départemental du Zou et Collines au Bénin. Médecine et Maladies Infectieuses, 37, 746-752.
https://doi.org/10.1016/j.medmal.2007.03.004
[19]  Toudji, A.G., Djeri, B., Karou, S.D., Tigossou, S., Ameyapoh, Y. and De Souza, C. (2017) Prévalence des souches d’entérobactéries productrices de bêta-lactamases à spectre élargi isolées au Togo et de leur sensibilité aux antibiotiques. International Journal of Biological and Chemical Sciences, 11, 1165-1177.
https://doi.org/10.4314/ijbcs.v11i3.19
[20]  Mètuor-Dabiré, A., Sougué, S., Tiemtoré, R.Y.W.-K., Zohoncon, T.M., Bangré, Y.A., Ouédraogo, P., Kabré, E. and Simporé, J. (2019) Coexistence between (TOHO-Type and BES-Type) Extended-Spectrum Î2-Lactamase Genes of Identified Enterobacteria at Saint Camille Hospital, Ouagadougou, West Africa. International Journal of Genetics and Molecular Biology, 11, 34-40.
https://doi.org/10.5897/IJGMB2019.0181
[21]  Aminul, P., Anwar, S., Molla, M.M.A. and Miah, M.R.A. (2021) Evaluation of Antibiotic Resistance Patterns in Clinical Isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3, 301-306.
https://doi.org/10.1016/j.bsheal.2021.11.001
[22]  Barakzahi, M., Hormozi, B., Rashki, A. and Rashki Ghalehnoo, Z. (2014) Prevalence of Extended Spectrum β-Lactamase in Klebsiella pneumonia Isolates in a Teaching Hospital of Zahedan City, Iran. Avicenna Journal of Clinical Microbiology and Infection, 1, Article No. 22934.
https://doi.org/10.17795/ajcmi-22934
[23]  Harbottle, H., Thakur, S., Zhao, S. and White, D.G. (2006) Genetics of Antimicrobial Resistance. Animal Biotechnology, 17, 111-124.
https://doi.org/10.1080/10495390600957092
[24]  Muylaert, A. and Mainil, J. (2013) Résistance bactériennes aux antibiotiques, les mécanismes et leur “contagiosité”. Annales de Médecine Vétérinaire, 156, 109-123.
[25]  Shashwati, N., Kiran, T. and Dhanvijay, A.G. (2014) Study of Extended Spectrum β-Lactamase Producing Enterobacteriaceae and Antibiotic Coresistance in a Tertiary Care Teaching Hospital. Journal of Natural Science, Biology and Medicine, 5, 30-35.
[26]  Teklu, D.S., Negeri, A.A., Legese, M.H., Bedada, T.L., Woldemariam, H.K. and Tullu, K.D. (2019) Extended-Spectrum Beta-Lactamase Production and Multi-Drug Resistance among Enterobacteriaceae Isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance & Infection Control, 8, Article No. 39.
https://doi.org/10.1186/s13756-019-0488-4
[27]  Alizadeh, H., Khodavandi, A., Alizadeh, F. and Bahador, N. (2021) Molecular Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates Producing blaVIM, blaNDM, and blaIMP in Clinical Centers in Isfahan, Iran. Jundishapur Journal of Microbiology, 14, e114473.
https://doi.org/10.5812/jjm.114473
[28]  Nordmann, P., Naas, T. and Poirel, L. (2011) Global Spread of Carbapenemase-Producing Enterobacteriaceae. Emerging Infectious Diseases, 17, 1791-1798.
https://doi.org/10.3201/eid1710.110655
[29]  Gao, H., Liu, Y., Wang, R., Wang, Q., Jin, L. and Wang, H. (2020) The Transferability and Evolution of NDM-1 and KPC-2 Co-Producing Klebsiella pneumoniae from Clinical Settings. EBioMedicine, 51, Article ID: 102599.
https://doi.org/10.1016/j.ebiom.2019.102599
[30]  Munita, J.M. and Arias, C.A. (2016) Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4.
https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
[31]  Khodadadian, R., Rahdar, H.A., Javadi, A., Safari, M. and Khorshidi, A. (2018) Detection of VIM-1 and IMP-1 Genes in Klebsiella pneumoniae and Relationship with Biofilm Formation. Microbial Pathogenesis, 115, 25-30.
https://doi.org/10.1016/j.micpath.2017.12.036
[32]  Limbago, B.M., Rasheed, J.K. anderson, K.F., Zhu, W., Kitchel, B., Watz, N., Munro, S., Gans, H., Banaei, N. and Kallen, A.J. (2011) IMP-Producing Carbapenem-Resistant Klebsiella pneumoniae in the United States. Journal of Clinical Microbiology, 49, 4239-4245.
https://doi.org/10.1128/JCM.05297-11
[33]  Han, R., Shi, Q., Wu, S., Yin, D., Peng, M., Dong, D., Zheng, Y., Guo, Y., Zhang, R. and Hu, F. (2020) Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Frontiers in Cellular and Infection Microbiology, 10, Article 314.
https://doi.org/10.3389/fcimb.2020.00314
[34]  Xu, J., Lin, W., Chen, Y. and He, F. (2020) Characterization of an IMP-4-Producing Klebsiella pneumoniae ST1873 Strain Recovered from an Infant with a Bloodstream Infection in China. Infection and Drug Resistance, 13, 773-779.
https://doi.org/10.2147/IDR.S247341
[35]  Lincopan, N., McCulloch, J.A., Reinert, C., Cassettari, V.C., Gales, A.C. and Mamizuka, E.M. (2005) First Isolation of Metallo-β-Lactamase-Producing Multiresistant Klebsiella pneumoniae from a Patient in Brazil. Journal of Clinical Microbiology, 43, 516-519.
https://doi.org/10.1128/JCM.43.1.516-519.2005
[36]  Fukigai, S., Alba, J., Kimura, S., Iida, T., Nishikura, N., Ishii, Y. and Yamaguchi, K. (2007) Nosocomial Outbreak of Genetically Related IMP-1 β-Lactamase-Producing Klebsiella pneumoniae in a General Hospital in Japan. International Journal of Antimicrobial Agents, 29, 306-310.
https://doi.org/10.1016/j.ijantimicag.2006.10.011
[37]  Wang, J., Yuan, M., Chen, H., Chen, X., Jia, Y., Zhu, X., Bai, L., Bai, X., Fanning, S., Lu, J. and Li, J. (2017) First Report of Klebsiella oxytoca Strain Simultaneously Producing NDM-1, IMP-4, and KPC-2 Carbapenemases. Antimicrobial Agents and Chemotherapy, 61, e00877-17.
https://doi.org/10.1128/AAC.00877-17
[38]  Stewart, J., Judd, L.M., Jenney, A., Holt, K.E., Wyres, K.L. and Hawkey, J. (2022) Epidemiology and Genomic Analysis of Klebsiella oxytoca from a Single Hospital Network in Australia. BMC Infectious Diseases, 22, Article No. 704.
https://doi.org/10.1186/s12879-022-07687-7
[39]  Mushi, M.F., Mshana, S.E., Imirzalioglu, C. and Bwanga, F. (2014) Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary Hospital in Mwanza, Tanzania. BioMed Research International, 2014, Article ID: 303104.
https://doi.org/10.1155/2014/303104
[40]  Zafer, M.M., Al-Agamy, M.H., El-Mahallawy, H.A., Amin, M.A. and Ashour, M.S.E.-D. (2014) Antimicrobial Resistance Pattern and Their Beta-Lactamase Encoding Genes among Pseudomonas aeruginosa Strains Isolated from Cancer Patients. BioMed Research International, 2014, Article ID: 101635.
https://doi.org/10.1155/2014/101635
[41]  Aghamiri, S., Amirmozafari, N., Fallah Mehrabadi, J., Fouladtan, B. and Samadi Kafil, H. (2014) Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla-IMP and bla-VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals. International Scholarly Research Notices, 2014, Article ID: 941507.
https://doi.org/10.1155/2014/941507
[42]  Adam, M.A. and Elhag, W.I. (2018) Prevalence of Metallo-β-Lactamase Acquired Genes among Carbapenems Susceptible and Resistant Gram-Negative Clinical Isolates Using Multiplex PCR, Khartoum Hospitals, Khartoum Sudan. BMC Infectious Diseases, 18, Article No. 668.
https://doi.org/10.1186/s12879-018-3581-z
[43]  Nordmann, P. (2014) Carbapenemase-Producing Enterobacteriaceae: Overview of a Major Public Health Challenge. Médecine et Maladies Infectieuses, 44, 51-56.
https://doi.org/10.1016/j.medmal.2013.11.007

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413