全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ni44Mn45Sn10.5Al0.5合金的中间马氏体相变研究
Intermartensitic Transformation of Ni44Mn45Sn10.5Al0.5 Alloy

DOI: 10.12677/CMP.2023.123008, PP. 65-71

Keywords: 哈斯勒合金,马氏体相变,中间马氏体相变,磁热效应
Heusler Alloys
, Martensitic Transformation, Intermartensitic Transformation, Magnetothermal Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用电弧熔炼的方法制备了Al掺杂的Ni44Mn45Sn10.5Al0.5哈斯勒合金样品。磁性测量结果表明,随温度降低样品表现出奥氏体A至马氏体M1、马氏体M1至马氏体M2的分步磁相变;随着外加磁场的升高,奥氏体相的磁矩逐渐增大,在高磁场下,依然表现为分步磁相变,说明该合金样品的中间马氏体相变非常稳定。在50 kOe的外加磁场下,整个相变过程中产生的最大磁熵变为9.66 J?kg?1?K?1,表明该合金样品具有一定的磁制冷能力。以上结果对我们深入认识Ni-Mn-Sn合金的磁热效应以及中间马氏体相变的过程提供了良好基础。
The Al-doped Ni44Mn45Sn10.5Al0.5 Hassler alloy samples were prepared by arc melting method. The magnetic measurement results show that the samples exhibit a stepwise magnetic transformation from austenite A to martensite M1, and from martensite M1 to martensite M2 with decreasing temperature; With the increase of the magnetic field, the magnetic moment of the austenite phase gradually increases. Under the high magnetic field, it still shows a stepwise magnetic transformation, indicating that the intermartensite transformation of the alloy sample is very stable. Under the magnetic field of 50 kOe, the maximum magnetic entropy generated during the whole phase transformation process is 9.66 J?kg?1?K?1, indicating that the alloy sample has a certain magnetic refrigeration ability. The above results provide a good basis for us to deeply understand the magnetocaloric effect of Ni-Mn-Sn alloy and the process of intermartensite transformation.

References

[1]  Swathi, S., Arun, K., Remya, U.D., et al. (2023) Ni48Ag2Mn37In13 Multifunctional Alloy: A Room Temperature Inverse Magne-tocaloric and Magnetoresistive Material. Journal of Alloys and Compounds, 938, Article ID: 168590.
https://doi.org/10.1016/j.jallcom.2022.168590
[2]  Yang, J., Li, Z., Zhang, X., et al. (2023) Manipulation of Thermal Hys-teresis and Magnetocaloric Effect in the Ni-Co-Mn-In Alloys through Lattice Contraction: Effect of Ge Substitution for In. Acta Materialia, 246, Article ID: 118694.
https://doi.org/10.1016/j.actamat.2023.118694
[3]  Zheng, S., Li, C., Guo, L., et al. (2023) Reverse Shape Memory Effect in Cu-Mn-Ga-Mo Alloys. Materials Characterization, 197, Article ID: 112679.
https://doi.org/10.1016/j.matchar.2023.112679
[4]  Mohan, M., Krishna, T.S.V., Rao, D.V.N.J. and Rao, D.S. (2023) In-fluence of Silver Addition on Wear Characteristics of Cu-Al-Mn Shape Memory Alloys. Materials Today: Proceedings.
https://doi.org/10.1016/j.matpr.2023.03.021
[5]  Zhang, Y., Li, Z., Kang, Y., et al. (2021) Relative Contributions of the Electron-Lattice and the Electron-Spin Scatterings to the Giant Baroresistance Effect in Ni-Co-Mn-In System. Journal of Alloys and Compounds, 859, Article ID: 157827.
https://doi.org/10.1016/j.jallcom.2020.157827
[6]  Sharma, V.K. and Manekar, M. (2023) Estimation of Barocaloric Effect Across the Magnetostructural Transition in Mn-Co-Ge Alloy from Magnetization Meas-urements under Pressure. Journal of Magnetism and Magnetic Materials, 565, Article ID: 170236.
https://doi.org/10.1016/j.jmmm.2022.170236
[7]  Vidyasagar, R., Hennel, M., Varga, M., et al. (2023) Structural, Ther-mo-Electric, and Thermo-Magnetic Characteristics of Non-Stoichiometric L21-Type Fe43Mn29Si28 Heusler Structures. Journal of Physics and Chemistry of Solids, 174, Article ID: 111185.
https://doi.org/10.1016/j.jpcs.2022.111185
[8]  Guan, Z., Bai, J., Zhang, Y., et al. (2023) Ultrahigh Cyclic Stability and Giant Elastocaloric Effect in Directionally Solidified (Ni50Mn28Fe2.5Ti19.5)99.4B0.6 Alloy. Scripta Materialia, 229, Article ID: 115353.
https://doi.org/10.1016/j.scriptamat.2023.115353
[9]  Pecharsky, V.K. and Gschneidner Jr., K.A. (2006) Advanced Mag-netocaloric Materials: What Does the Future Hold? International Journal of Refrigeration, 29, 1239-1249.
https://doi.org/10.1016/j.ijrefrig.2006.03.020
[10]  Kokorin, V.V., Chernenko, V.A., Cesari, E., et al. (1996) Pre-Martensitic State in Ni-Mn-Ga Alloys. Journal of Physics Condensed Matter, 8, 6457-6463.
https://doi.org/10.1088/0953-8984/8/35/014
[11]  Vasil’Ev, A.N., Keiper, A.R., Kokorin, V.V., et al. (1993) The Structural Phase Transitions in Ni2MnGa Induced by Low-Temperature Uniaxial Stress. International Journal of Applied Electromagnetics in Materials, 5, 163-169.
[12]  Martynov, V.V. and Kokorin, V.V. (1992) The Crystal Structure of Thermally- and Stress-Induced Martensites in Ni2MnGa Single Crystals. Archives of Mechanics, 2, 739-749.
https://doi.org/10.1051/jp3:1992155
[13]  Wang, W.H., Wu, G.H., Chen, J.L., et al. (2001) Intermartensitic Transformation and Magnetic-Field-Induced Strain in Ni52Mn24.5Ga23.5 Single Crystals. Applied Physics Letters, 79, 1148-1150.
https://doi.org/10.1063/1.1396820
[14]  Li, D., Zhang, X., Zhang, G., et al. (2021) Enhancing the Elastocaloric Effect in Ni-Mn-Ga Alloys through the Coupling of Magnetic Transition and Two-Step Structural Transformation. Applied Physics Letters, 118, Article ID: 213903.
https://doi.org/10.1063/5.0048588
[15]  Inoue, T., Morito, S., Murakami, Y., Oda, K. and Otsuka, K. (1994) New Martensite Structures and Composition Dependence of Martensitic Transformations in Ni50AlxMn50?x Alloys. Materials Letters, 19, 33-37.
https://doi.org/10.1016/0167-577X(94)90101-5
[16]  Morito, S. and Otsuka, K. (1996) Electron Microscopy of New Mar-tensites with Long Period Stacking Order Structures in Ni50AlxMn50?x Alloys I. Structures and Morphologies. Materials Science & Engineering A, 208, 47-55.
https://doi.org/10.1016/0921-5093(95)10051-2
[17]  Yu, S.Y., Yan, S.S., Zhao, L., et al. (2010) Intermartensitic Transfor-mation and Magnetic Field Effect in NiMnInSb Ferromagnetic Shape Memory Alloys. Journal of Magnetism & Magnetic Mate-rials, 322, 2541-2544.
https://doi.org/10.1016/j.jmmm.2010.03.017
[18]  Dong, S.Y., Chen, J.Y., Han, Z.D., et al. (2016) Intermartensitic Trans-formation and Enhanced Exchange Bias in Pd (Pt)-Doped Ni-Mn-Sn Alloys. Scientific Reports, 6, Article No. 25911.
https://doi.org/10.1038/srep25911
[19]  Zhang, H., Zhang, X., Xiao, Y., et al. (2022) Peculiarity of Magnetocaloric and Magnetoresistance Effects in Ni-Mn-Sn-Fe Alloy with Successive Metamagnetic Structural Transitions. Intermetallics, 149, Article ID: 107651.
https://doi.org/10.1016/j.intermet.2022.107651

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413