全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells

DOI: 10.4236/epe.2023.158013, PP. 265-276

Keywords: Perovskite, Solar Cell, High Efficiency, CSSnCl3, Electrical Properties, SCAPS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite solar cell made of semiconductor materials. The design that has been suggested is Al:ZnO/ZnO/CdS/CsSnCl3 and MoS2. The analysis focuses on how different characteristics of the material affect the device’s performance. The analysis of the data reveals that the architecture had 26.15% power conversion efficiency (PCE). The solar cell creates an interest in developing a non-toxic solar cell with low manufacturing costs, outstanding conversion efficiency, and stability.

References

[1]  Hossain, M.K., et al. (2023) An Extensive Study on Multiple ETL and HTL Layers to Design and Simulation of High-Performance Lead-Free CsSnCl3-Based Perovskite Solar Cells. Scientific Reports, 13, Article No. 2521.
https://doi.org/10.1038/s41598-023-28506-2
[2]  Rahmani, E.F., Aliah, H. and Pitriana, P. (2023) Phonon Properties Calculation of Inorganic Perovskite CsSnX3 (X = Cl, Br, I) in Cubic Phase Using Density Functional Theory (DFT). AIP Conference Proceedings, 2646, Article ID: 060022.
https://doi.org/10.1063/5.0118930
[3]  Kumar, A., Pandey, N., Punetha, D., Sahaa, R. and Chakrabarti, S. (2023) Tenability and Improvement of the Structural, Electronic, and Optical Properties of Lead-Free CsSnCl3 Perovskite by Incorporating Reduced Graphene Oxide (rGO) for Optoelectronic Applications. Journal of Materials Chemistry C, 11, 3606-3615.
https://doi.org/10.1039/D2TC04586A
[4]  Mahassen, H.E. and Shabat, M.M. (2023) Study of Solar Cells Structures Based on Perovskite and Nanoparticles. Proceedings of the Romanian Academy, Series A, 24, 27-34.
[5]  Elblbeisi, M.H. and Shabat, M.M. (2023) Comparison between Different Solar Cells Based on Perovskite Types. Israa University Journal of Applied Science, 6, 42-55.
https://doi.org/10.52865/hamr3393
[6]  McMeekin, D.P., et al. (2023) Intermediate-Phase Engineering via Dimethylammonium Cation Additive for Stable Perovskite Solar Cells. Nature Materials, 22, 73-83.
https://doi.org/10.1038/s41563-022-01399-8
[7]  Yu, W., et al. (2015) Enhancement of Visible Light Photocatalytic Activity of Ag2O/F-TiO2 Composites. Journal of Molecular Catalysis A: Chemical, 407, 25-31.
https://doi.org/10.1016/j.molcata.2015.06.015
[8]  Azhar, M.R., Aliah, H. and Pitriana, P. (2023) Calculation of the Electronic Structure CsBX3 (B = Pb and Sn, X = Cl, Br and I) Using Density Functional Theory (DFT) Method as the Active Material of Perovskite Solar Cells. AIP Conference Proceedings, 2646, Article ID: 060020.
https://doi.org/10.1063/5.0118929
[9]  Burgelman, M., Decock, K., Khelifi, S. and Abass, A. (2013) Advanced Electrical Simulation of Thin Film Solar Cells. Thin Solid Films, 535, 296-301.
https://doi.org/10.1016/j.tsf.2012.10.032
[10]  Chen, Y.J., Hou, C. and Yang, Y. (2023) Surface Energy and Surface Stability of Cesium Tin Halide Perovskites: A Theoretical Investigation. Physical Chemistry Chemical Physics, 25, 10583-10590.
https://doi.org/10.1039/D2CP04183A
[11]  Decock, K., Zabierowski, P. and Burgelman, M. (2012) Modeling Metastabilities in Chalcopyrite-Based Thin Film Solar Cells. Journal of Applied Physics, 111, Article ID: 043703.
https://doi.org/10.1063/1.3686651
[12]  Sadanand, and Dwivedi, D. (2020) Modeling of CZTSSe Solar Photovoltaic Cell for Window Layer Optimization. Optik, 222, Article ID: 165407.
https://doi.org/10.1016/j.ijleo.2020.165407
[13]  Raghvendra, Kumar, R.R. and Pandey, S.K. (2019) Performance Evaluation and Material Parameter Perspective of Eco-Friendly Highly Efficient CsSnGeI3 Perovskite Solar Cell. Superlattices and Microstructures, 135, Article ID: 106273.
https://doi.org/10.1016/j.spmi.2019.106273
[14]  Shukla, R., Punetha, D., Kumar, R.R. and Pandey, S.K. (2023) Examining Performance Parameters of Stable Perovskite Solar Cells. Optical Materials, 143, Article ID: 114124.
https://doi.org/10.1016/j.optmat.2023.114124
[15]  Tobbeche, S., Kalache, S., Elbar, M., Kateb, M.N. and Serdouk, M.R. (2019) Improvement of the CIGS Solar Cell Performance: Structure Based on a ZnS Buffer Layer. Optical and Quantum Electronics, 51, Article No. 284.
https://doi.org/10.1007/s11082-019-2000-z
[16]  Ahmed, S., Jannat, F., Khan, M.A.K. and Alim, M.A. (2021) Numerical Development of Eco-Friendly Cs2TiBr6 Based Perovskite Solar Cell with All-Inorganic Charge Transport Materials via SCAPS-1D. Optik, 225, Article ID: 165765.
https://doi.org/10.1016/j.ijleo.2020.165765
[17]  Kapadnis, R., et al. (2020) Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment, 10, 3-12.
[18]  Ashok, A., et al. (2020) Comparative Studies of CdS Thin Films by Chemical Bath Deposition Techniques as a Buffer Layer for Solar Cell Applications. Journal of Materials Science: Materials in Electronics, 31, 7499-7518.
https://doi.org/10.1007/s10854-020-03024-3
[19]  Ciris, A., et al. (2022) The Effect of ZnCl2 and CdCl2 Treatment on ZnS/CdS Junction Partner on CdTe Cell Performance. Materials Science in Semiconductor Processing, 149, Article ID: 106860.
https://doi.org/10.1016/j.mssp.2022.106860
[20]  Lee, J.H., Yi, J.S., Yang, K.J., Park, J.H. and Oh, R.D. (2003) Electrical and Optical Properties of Boron-Doped CdS Thin Films Prepared by Chemical Bath Deposition. Thin Solid Films, 431-432, 344-348.
https://doi.org/10.1016/S0040-6090(03)00153-6
[21]  Kakhaki, Z.M., Youzbashi, A.A., Sangpour, P., Naderi, N. and Orooji, Y. (2022) Influence of Cd Salt Concentration on the Photoconductivity of CdS Thin Films Prepared by Chemical Bath Technique. Materials Science in Semiconductor Processing, 148, Article ID: 106773.
https://doi.org/10.1016/j.mssp.2022.106773
[22]  Munna, F., et al. (2020) Effect of Zinc Doping on the Optoelectronic Properties of Cadmium Sulphide (CdS) Thin Films Deposited by Chemical Bath Deposition by Utilizing an Alternative Sulphur Precursor. Optik, 218, Article ID: 165197.
https://doi.org/10.1016/j.ijleo.2020.165197

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413