全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bismuth (III) Triflate Catalyzed Multicomponent Synthesis of 2,4,5-Trisubstituted Imidazoles

DOI: 10.4236/gsc.2023.133011, PP. 209-215

Keywords: Imidazoles, Heterocycles, Bismuth Compounds, Green Chemistry, Multicomponent Reactions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.

References

[1]  Cabrele, C. and Reiser, O. (2016) The Modern Face of Synthetic Heterocyclic Chemistry. The Journal of Organic Chemistry, 81, 10109-10125.
https://doi.org/10.1021/acs.joc.6b02034
[2]  Taylor, A.P., Robinson, R.P., Fobian, Y.M., Blakemore, D.C., Jones, L.H. and Fadeyi, O. (2016) Modern Advances in Heterocyclic Chemistry in Drug Discovery. Organic & Biomolecular Chemistry, 14, 6611-6637.
https://doi.org/10.1039/C6OB00936K
[3]  Kumar, V. and Mahajan, M.P. (2011) Pyrimidine and Imidazole. In: Majumdar, K.C. and Chattopadhyay, S.K., Eds., Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, 507-533.
https://doi.org/10.1002/9783527634880.ch14
[4]  Lombardino, J.G. and Wiseman, E.H. (1974) Preparation and Anti-Inflammatory Activity of Some Nonacidic Trisubstituted Imidazoles. Journal of Medicinal Chemistry, 17, 1182-1188.
https://doi.org/10.1021/jm00257a011
[5]  Eprosartan Mesylate.
https://pubchem.ncbi.nlm.nih.gov/compound/Eprosartan-mesylate
[6]  Heeres, J., Backx, L.J.J., Mostmans, J.H. and Van Cutsem, J. (1979) Antimycotic Imidazoles. Part 4. Synthesis and Antifungal Activity of Ketoconazole, a New Potent Orally Active Broad-Spectrum Antifungal Agent. Journal of Medicinal Chemistry, 22, 1003-1005.
https://doi.org/10.1021/jm00194a023
[7]  
https://pubchem.ncbi.nlm.nih.gov/compound/Losartan#section=InChIKey
[8]  Olmesartan.
https://pubchem.ncbi.nlm.nih.gov/compound/Olmesartan
[9]  Puratchikody, A. and Doble, M. (2007) Antinociceptive and Anti-Inflammatory Activities and QSAR Studies on 2-Substituted-4,5-diphenyl-1H-imidazoles. Bioorganic & Medicinal Chemistry, 15, 1083-1090.
https://doi.org/10.1016/j.bmc.2006.10.025
[10]  Radziszewski, B. (1882) Ueber die Constitution des Lophins und verwandter Verbindungen. Berichte Der Deutschen Chemischen Gesellschaft, 15, 1493-1496.
https://doi.org/10.1002/cber.18820150207
[11]  Romero, D.H., Heredia, V.E.T., García-Barradas, O., López, M.E.M. and Pavón, E.S. (2014) Synthesis of Imidazole Derivatives and Their Biological Activities. Journal of Chemistry and Biochemistry, 2, 45-83.
https://doi.org/10.15640/jcb.v2n2a3
[12]  Patel, G., Dewangan, D.K., Bhakat, N. and Banerjee, S. (2021) Green Approaches for the Synthesis of Poly-Functionalized Imidazole Derivatives: A Comprehensive Review. Current Research in Green and Sustainable Chemistry, 4, Article ID: 100175.
https://doi.org/10.1016/j.crgsc.2021.100175
[13]  Wang, L.-M., Wang, Y.-H., Tian, H., Yao, Y.-F., Shao, J.-H. and Liu, B. (2006) Ytterbium Triflate as an Efficient Catalyst for One-Pot Synthesis of Substituted Imidazoles through Three-Component Condensation of Benzil, Aldehydes and Ammonium Acetate. Journal of Fluorine Chemistry, 127, 1570-1573.
https://doi.org/10.1016/j.jfluchem.2006.08.005
[14]  Shaabani, A. and Rahmati, A. (2006) Silica Sulfuric Acid as an Efficient and Recoverable Catalyst for the Synthesis of Trisubstituted Imidazoles. Journal of Molecular Catalysis A: Chemical, 249, 246-248.
https://doi.org/10.1016/j.molcata.2006.01.006
[15]  Heravi, M.M., Bakhtiari, K., Oskooie, H.A. and Taheri, S. (2007) Synthesis of 2,4,5-Triaryl-imidazoles Catalyzed by NiCl2·6H2O under Heterogeneous System. Journal of Molecular Catalysis A, 263, 279-281.
https://doi.org/10.1016/j.molcata.2006.08.070
[16]  Wolkenberg, S.E., Wisnoski, D.D., Leister, W.H., Wang, Y., Zhao, Z. and Lindsley, C.W. (2004) Efficient Synthesis of Imidazoles from Aldehydes and 1,2-Diketones Using Microwave Irradiation. Organic Letters, 6, 1453-1456.
https://doi.org/10.1021/ol049682b
[17]  Sangshetti, J.N., Kokare, N.D., Kotharkar, S.A. and Shinde, D.B. (2008) Sodium Bisulfite as an Efficient and Inexpensive Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles from Benzil or Benzoin and Aromatic Aldehydes. Monatshefte für Chemie, 139, 125-127.
https://doi.org/10.1007/s00706-007-0766-3
[18]  Chary, M.V., Keerthysri, N.C., Vupallapati, S.V.N., Lingaiah, N. and Kantevari, S. (2008) Tetrabutylammonium Bromide (TBAB) in Isopropanol: An Efficient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2,4,5-Trisubstituted Imidazoles. Catalysis Communications, 9, 2013-2017.
https://doi.org/10.1016/j.catcom.2008.03.037
[19]  Bhosale, S.V., Kalyankar, M.B., Nalage, S.V., Bhosale, D.S., Pandhare, S.L., Kotbagi, T.V., Umbarkar, S.B. and Dongare, M.K. (2011) One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Using MoO3/SiO2, an Efficient and Recyclable Catalyst. Synthetic Communications, 41, 762-769.
https://doi.org/10.1080/00397911003644415
[20]  Zheng, H., Shi, Q.Y., Du, K., Mei, Y.J. and Zhang, P.F. (2013) One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by Lipase. Catalysis Letters, 143, 118-121.
https://doi.org/10.1007/s10562-012-0920-3
[21]  Heravi, M.M., Zakeri, M. and Haghi, H. (2011) MCM-41 Mesoporous Silica: Efficient and Reusable Catalyst for the Synthesis of 2,4,5-Trisubstituted Imidazoles Under Solvent-Free Conditions. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 1310-1314.
https://doi.org/10.1080/15533174.2011.609211
[22]  Naeimi, H. and Aghaseyedkarimi, D. (2016) Ionophore Silica-Coated Magnetite Nanoparticles as a Recyclable Heterogeneous Catalyst for One-Pot Green Synthesis of 2,4,5-Trisubstituted Imidazoles. Dalton Transactions, 45, 1243-1253.
https://doi.org/10.1039/C5DT03488D
[23]  Parthiban, D. and Karunakaran, R.J. (2018) Benzethonium Chloride Catalyzed One Pot Synthesis of 2,4,5-Trisubstituted Imidazoles and 1,2,4,5-Tetrasubstituted Imidazoles in Aqueous Ethanol as a Green Solvent. Oriental Journal of Chemistry, 34, 3004-3015.
https://doi.org/10.13005/ojc/340642
[24]  Sonar, J., Pardeshi, S., Dokhe, S., Pawar, R., Kharat, K., Zine, A., Matsagar, B., Wu, K. and Thore, S. (2019) An Efficient Method for the Synthesis of 2,4,5-Trisubstituted Imidazoles Using Lactic Acid as Promoter. SN Applied Sciences, 1, Article No. 1045.
https://doi.org/10.1007/s42452-019-0935-0
[25]  Nguyen, T.T., Le, N.-P.T., Nguyen, T.T. and Tran, P.H. (2019) An Efficient Multicomponent Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by a Magnetic Nanoparticle Supported Lewis Acidic Deep Eutectic Solvent. RSC Advances, 9, 38148-38153.
https://doi.org/10.1039/C9RA08074K
[26]  Lahari, M.S.V.S., Sankarao, D., Shyam, S., Syamala, Ch. and Krishnarao, N. (2022) Fast Rate of Catalyst Promoted by Bio Active Synthesis of 2,4,5-Triphenylimidazole Derivatives Employing Methane Sulphonic Acid. World Journal of Pharmaceutical Sciences, 11, 2429-2440.
[27]  Ghogare, R.S. (2022) Mandelic Acid: An Efficient and Green Organo-Catalyst for Synthesis of 2,4,5-Trisubstituted Imidazoles under Solvent-Free Conditions. Organic Communications, 15, 44-58.
https://doi.org/10.25135/acg.oc.118.22.01.2341
[28]  Mohan, R. (2010) Green Bismuth. Nature Chemistry, 2, 336.
https://doi.org/10.1038/nchem.609
[29]  Lopez, E., Thorp, S.C. and Mohan, R.S. (2021) Bismuth(III) Compounds as Catalysts in Organic Synthesis: A Mini Review. Polyhedron, 222, Article ID: 115765.
https://doi.org/10.1016/j.poly.2022.115765
[30]  Moon, H.W. and Cornella, J. (2022) Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis ACS Catalysis, 12, 1382-1393.
https://doi.org/10.1021/acscatal.1c04897
[31]  Gagnon, A., Dansereau, J. and Roch, A.L. (2017) Organobismuth Reagents: Synthesis, Properties and Applications in Organic Synthesis. Synthesis, 49, 1707-1745.
https://doi.org/10.1055/s-0036-1589482
[32]  Ondet, P., Lemière, G. and Dunach, E. (2017) Cyclisations Catalysed by Bismuth(III) Triflate. European Journal of Organic Chemistry, 4, 761-780.
https://doi.org/10.1002/ejoc.201600937
[33]  Starcevich, J.T., Laughlin, T.J. and Mohan, R.S. (2013) Iron(III) Tosylate Catalyzed Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones/thiones via the Biginelli Reaction. Tetrahedron Letters, 54, 983-985.
https://doi.org/10.1016/j.tetlet.2012.12.032
[34]  Sunderhaus, J.D. and Martin, S.F. (2009) Applications of Multicomponent Reactions to the Synthesis of Diverse Heterocyclic Scaffolds. Chemistry: A European Journal, 15, 1300-1308.
https://doi.org/10.1002/chem.200802140

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413