全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Everything You Wanted to Know but Could Never Find from the Cochran-Mantel-Haenszel Test

DOI: 10.4236/jdaip.2023.113016, PP. 310-339

Keywords: Odds Ratio, Effect Size, Statistical Control, Qualitative Variables, Nonparametric Statistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Cochran-Mantel-Haenszel (CMH) test, developed in the 1950s, is a classic in health research, especially in epidemiology and other fields in which dichotomous and polytomous variables are frequent. This nonparametric test makes it possible to measure and check the effect of an antecedent variable X on a health outcome Y, statistically controlling the effect of a third variable Z that acts as a confounding variable in the relationship between X and Y. Both X and Y are measured on a dichotomous qualitative scale and Z on a polytomous-qualitative or ordinal scale. It is assumed that the effect of X on Y is homogeneous between the k strata of Z, which is usually tested by the Breslow-Day test with the Tarone’s correction or the Woolfs test. The main statistical programs have the CMH test together with a test to verify the assumption of a homogeneous effect across the strata, so that it is easy to apply. However, its fundamentals and details of calculations are a mystery to most researchers, and even difficult to find or understand. The aim of this article is to present these details in a clear and concise way, including the assumptions and alternatives to non-compliance. This technical knowledge is applied to a simulated realistic example of the area of epidemiology in health and, finally, an interpretive synthesis of the analyses is given. In addition, some suggestions for the test report are made.

References

[1]  Cochran, W.G. (1954) On the Methods for Strengthening the Common χ2 Tests. Biometrics, 10, 417-451.
https://doi.org/10.2307/3001616
[2]  Mantel, N. and Haenszel, W. (1959) Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease. Journal of the National Cancer Institute, 22, 719-748.
[3]  Woolf, B. (1955) On Estimating the Relation between Blood Group and Disease. Annals of Human Genetics, 19, 251-253.
https://doi.org/10.1111/j.1469-1809.1955.tb01348.x
[4]  Breslow, N.E. and Day, N.E. (1980) Statistical Methods in Cancer Research: The Analysis of Case-Control Studies. International Agency for Research on Cancer Scientific, Lyon.
[5]  Tarone, R.E. (1985) On Heterogeneity Tests Based on Efficient Scores. Biometrika, 72, 91-95.
https://doi.org/10.1093/biomet/72.1.91
[6]  Agresti, A. (2019) An Introduction to the Categorical Data Analysis. 3th Edition, John Wiley and Sons, Hoboken.
[7]  Yilmaz, A.E. and Altunay, S.A. (2022) Post-Hoc Comparison Tests for Odds Ratios. Electronic Journal of Applied Statistical Analysis, 15, 75-94.
[8]  Schwarzer, G. and Rücker, G. (2021) Meta-Analysis of Proportions. In: Evangelou, E. and Veroniki, A.A., Ed., Meta-Research: Methods and Protocols, Springer, New York, 159-172.
https://doi.org/10.1007/978-1-0716-1566-9_10
[9]  International Business Machines Corporation (2022) IBM SPSS Statistics Base 28.
https://www.ibm.com/docs/en/SSLVMB_28.0.0/pdf/IBM_SPSS_Statistics_Base.pdf
[10]  Robins, J.M., Breslow, N. and Greenland, S. (1986) Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models. Biometrics, 42, 311-323.
https://doi.org/10.2307/2531052
[11]  Böhning, D., Sangnawakij, P. and Holling, H. (2022) Confidence Interval Estimation for The Mantel—Haenszel Estimator of the Risk Ratio and Risk Difference in Rare Event Meta-Analysis with Emphasis on the Bootstrap. Journal of Statistical Computation and Simulation, 92, 1267-1291.
https://doi.org/10.1080/00949655.2021.1991347
[12]  Cucchetti, A. (2022) Analyzing Categorical Variable: Descriptive Statistics and Comparisons. In: Ceresoli, M., Abu-Zidan, F.M., Staudenmayer, K.L., Catena, F. and Coccolini, F., Eds., Statistics and Research Methods for Acute Care and General Surgeons. Hot Topics in Acute Care Surgery and Trauma, Springer, Cham, 67-73.
https://doi.org/10.1007/978-3-031-13818-8_6
[13]  Deeks, J.J., Higgins, J.P. and Altman, D.G. (2019) Analysing Data and Undertaking Meta-Analyses. In: Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J. and Welch, V.A., Eds., Cochrane Handbook for Systematic Reviews of Interventions, Wiley Online Library, New York, 1-48.
https://training.cochrane.org/handbook/current/chapter-10
[14]  Kulinskaya, E. and Dollinger, M.B. (2015) An Accurate Test for Homogeneity of Odds Ratios Based on Cochran’s Q-Statistic. BMC Medical Research Methodology, 15, Article No. 49.
https://doi.org/10.1186/s12874-015-0034-x
[15]  Zhang, C., Wang, X., Chen, M. and Wang, T.A. (2021) Comparison of Hypothesis Tests for Homogeneity in Meta-Analysis with Focus on Rare Binary Events. Research Synthesis Methods, 12, 408-428.
https://doi.org/10.1002/jrsm.1484
[16]  Shim, S.R., Kim, S.J. and Lee, J. (2019) Diagnostic Test Accuracy: Application and Practice Using R Software. Epidemiology and Health, 41, e2019007.
https://doi.org/10.4178/epih.e2019007
[17]  Almalik, O. and van den Heuvel, E.R. (2018) Testing Homogeneity of Effect Sizes in Pooling 2x2 Contingency Tables from Multiple Studies: A Comparison of Methods. Cogent Mathematics & Statistics, 5, Article ID: 1478698.
https://doi.org/10.1080/25742558.2018.1478698
[18]  Zaiontz, C. (2022) Cochran-Mantel-Haenszel (CMH) Test. In Real Statistics Using Excel.
https://www.real-statistics.com/chi-square-and-f-distributions/cochran-mantel-haenszel/
[19]  Meyer, D., Zeileis, A., Hornik, K. and Friendly, M. (2022) Woolf Test for Homogeneity in 2 × 2 × k Tables.
https://rdrr.io/cran/DescTools/man/WoolfTest.html
[20]  Vierra, A., Razzaq, A. and Andreadis, A. (2023) Categorical Variable Analyses: Chi-Square, Fisher Exact, and Mantel-Haenszel. In: Eltorai, A.E.M., Bakal, J.A., Newell, P.C. and Osband, A.J., Eds., Translational Surgery. Handbook for Designing and Conducting Clinical and Translational Research, Elsevier Science, Amsterdam, 171-175.
https://doi.org/10.1016/B978-0-323-90300-4.00095-1
[21]  Breslow, N.E. (1996) Statistics in Epidemiology: The Case-Control Study. Journal of the American Statistical Association, 91, 14-28.
https://doi.org/10.1080/01621459.1996.10476660
[22]  Korthauer, K., Kimes, P.K., Duvallet, C., Reyes, A., Subramanian, A., Teng, M., Shukla, C., Alm, E.J. and Hicks, S.C. (2019) A Practical Guide to Methods Controlling False Discoveries in Computational Biology. Genome Biology, 20, Article No. 118.
https://doi.org/10.1186/s13059-019-1716-1
[23]  Breslow, N.E., Day, N.E., Halvorsen, K.T., Prentice, R.L. and Sabai, C. (1978) Estimation of Multiple Relative Risk Functions in Matched Case-Control Studies. American Journal of Epidemiology, 108, 299-307.
https://doi.org/10.1093/oxfordjournals.aje.a112623
[24]  Avalos, M., Pouyes, H., Kwemou, M. and Xu, B. (2022) Package ‘clogitLasso’.
https://cran.r-project.org/web/packages/clogitLasso/clogitLasso.pdf
[25]  World Health Association (2020) Eleventh Revision of the International Classification of Diseases (ICD-11). Geneva.
https://www.who.int/classifications/icd/en/
[26]  Secretaria de Gobernación (2019) Norma Oficial Mexicana NOM-172-SEMARNAT-2019. Lineamientos para la Obtención y Comunicación del índice de Calidad del Aire y Riesgos a la Salud [Mexican Official Standard NOM-172-SEMARNAT-2019. Guidelines for Obtaining and Communicating the Air Quality Index and Health Risks]. Diario Oficial de la Federación.
https://www.dof.gob.mx/nota_detalle.php?codigo=5579387&fecha=20/11/2019#gsc.tab=0
[27]  Paciência, I., Cavaleiro-Rufo, J. and Moreira, A. (2022) Environmental Inequality: Air Pollution and Asthma in Children. Pediatric Allergy and Immunology, 33, e13818.
https://doi.org/10.1111/pai.13818

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133