全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution

DOI: 10.4236/ijaa.2023.133009, PP. 154-165

Keywords: Stars: Normal, Stars: Luminosity Function, Mass Function Stars: Statistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Topp-Leone (T-L) distribution has aided the modeling of scientific data in many contexts. We demonstrate how it can be adapted to model astrophysical data. We analyse the left truncated version of the T-L distribution, deriving its probability density function (PDF), distribution function, average value, rth moment about the origin, median, the random generation of its values, and its maximum likelihood estimator, which allows us to derive the two unknown parameters. The T-L distribution, in its regular and truncated versions, is then applied to model the initial mass function for the stars. A comparison is made with specific clusters and between proposed functions for the IMF. The Topp-Leone distribution can provide an excellent fit in some cases.

References

[1]  Topp, C.W. and Leone, F.C. (1955) A Family of J-Shaped Frequency Functions. Journal of the American Statistical Association, 50, 209-219.
https://doi.org/10.1080/01621459.1955.10501259
[2]  Nadarajah, S. and Kotz, S. (2003) Moments of Some J-Shaped Distributions. Journal of Applied Statistics, 30, 311-317.
https://doi.org/10.1080/0266476022000030084
[3]  Kotz, S. and Seier, E. (2007) Kurtosis of the Topp-Leone Distributions. Interstat, 1, 1-15.
[4]  Vicari, D., Van Dorp, J.R. and Kotz, S. (2008) Two-Sided Generalized Topp and Leone (TS-GTL) Distributions. Journal of Applied Statistics, 35, 1115-1129.
https://doi.org/10.1080/02664760802230583
[5]  Khaleel, M.A., Oguntunde, P.E., Abbasi, J.N.A., Ibrahim, N.A. and AbuJarad, M.H.A. (2020) The Marshall-Olkin Topp Leone-G Family of Distributions: A Family for Generalizing Probability Models. Scientific African, 8, e00470.
https://doi.org/10.1016/j.sciaf.2020.e00470
[6]  Al-Babtain, A.A., Elbatal, I., Chesneau C and Elgarhy M. (2020) Sine Topp-Leone-G Family of Distributions: Theory and Applications. Open Physics, 18, 574-593.
https://doi.org/10.1515/phys-2020-0180
[7]  Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
[8]  von Seggern, D. (1992) CRC Standard Curves and Surfaces. CRC, New York.
[9]  Thompson, W.J. (1997) Atlas for Computing Mathematical Functions. Wiley-Inter-Science, New York.
[10]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[11]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[12]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/TAC.1974.1100705
[13]  Liddle, A.R. (2004) How Many Cosmological Parameters? MNRAS, 351, L49-L53.
https://doi.org/10.1111/j.1365-2966.2004.08033.x
[14]  Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds., 1604-2004: Supernovae as Cosmological Lighthouses, Astronomical Society of the Pacific, Vol. 342 of Astronomical Society of the Pacific Conference Series, ASP, San Francisco, 508-516.
[15]  Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463.
https://doi.org/10.1214/aoms/1177731684
[16]  Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281.
https://doi.org/10.1214/aoms/1177730256
[17]  Massey Jr., F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78.
https://doi.org/10.1080/01621459.1951.10500769
[18]  Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions. 3rd Edition, Wiley, New York.
[19]  Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. 2nd Edition, Vol. 1, Wiley, New York.
[20]  Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M. and Moraux, E. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362—Testing the Disc Regulation Paradigm at 5 Myr. Monthly Notices of the Royal Astronomical Society, 384, 675-686.
https://doi.org/10.1111/j.1365-2966.2007.12725.x
[21]  Moitinho, A., Alves, J., Huélamo, N. and Lada, C.J. (2001) NGC 2362: A Template for Early Stellar Evolution. The Astrophysical Journal, 563, L73-L76.
https://doi.org/10.1086/338503
[22]  Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. Monthly Notices of the Royal Astronomical Society, 392, 1034-1050.
https://doi.org/10.1111/j.1365-2966.2008.14140.x
[23]  Prisinzano, L., Damiani, F., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. Astronomy & Astrophysics, 589, Article No. A70.
https://doi.org/10.1051/0004-6361/201527875
[24]  Panwar, N., Pandey, A.K., Samal, M.R., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, Article No. 44.
https://doi.org/10.3847/1538-3881/aa9f1b
[25]  Zaninetti, L. (2022) New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution. International Journal of Astronomy and Astrophysics, 12, 347-362.
https://doi.org/10.4236/ijaa.2022.124020
[26]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics 11, 133-149.
https://doi.org/10.4236/ijaa.2021.111008
[27]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529.
https://doi.org/10.4236/ijaa.2021.114028
[28]  Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55.
https://doi.org/10.4236/ijaa.2020.101004
[29]  Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410.
https://doi.org/10.4236/ijaa.2019.94027
[30]  Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars. Advances in Astrophysics, 2, 197-213.
https://doi.org/10.22606/adap.2017.23005
[31]  Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 23, 1139-1147.
https://doi.org/10.12988/astp.2013.310125
[32]  Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, Article No. 128.
https://doi.org/10.1088/0004-637X/765/2/128

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413