全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Approach to the Dark Matter/Dark Energy Puzzle

DOI: 10.4236/ijaa.2023.133010, PP. 166-171

Keywords: Dark Matter, Dark Energy, Topological Defects, Cosmic Inflation, Quark-Gluon Plasma

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dilemmas posed by dark matter and dark energy have been with us for decades without a satisfactory resolution. We propose that both DM and DE can be explained by the existence of long-lived topological gravitational vortices that were produced in the quark-gluon epoch of cosmic inflation due to the misalignment of the gravitational and strong forces. This is analogous to the misalignment mechanism proposed for the production of axions in the early universe. The masses of these topological vortices are expected to be on the order of the nucleon mass. Possible means for their detection are discussed.

References

[1]  Workman, R.L. et al. (Particle Data Group) (2022) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01. (For Recent Reviews, See Articles on “Dark Matter” and “Dark Energy”)
https://doi.org/10.1093/ptep/ptac097
[2]  Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432.
https://doi.org/10.1146/annurev.astro.46.060407.145243
[3]  Wikipedia (2013) Optical Vortex.
[4]  Shen, Y., Wang, X., et al. (2019) Optical Vortices 30 Years on: OAM Manipulation from Topological Charge to Multiple Singularities. Light: Science & Applications, 8, Article No. 90.
https://doi.org/10.1038/s41377-019-0194-2
[5]  Preskill, J., Wise, M. and Wilczek, F. (1983) Cosmology of the Invisible Axion. Physics Letters B, 120, 127-132.
https://doi.org/10.1016/0370-2693(83)90637-8
[6]  Dine, M. and Fischler, W. (1983) The Not-So-Harmless Axion. Physics Letters B, 120, 137-141.
https://doi.org/10.1016/0370-2693(83)90639-1
[7]  Abbott, L.F. and Sikivie, P. (1983) A Cosmological Bound on the Invisible Axion. Physics Letters B, 120, 133-136.
https://doi.org/10.1016/0370-2693(83)90638-X
[8]  Co, R.T., Hall, L.J. and Harigaya, K. (2020) Axion Kinetic Misalignment Mechanism. Physical Review Letters, 124, Article ID: 251802.
https://doi.org/10.1103/PhysRevLett.124.251802
[9]  Edery, A. (2021) Non-Singular Vortices with Positive Mass in 2 + 1-Dimensional Einstein Gravity with AdS3 and Minkowski Background. Journal of High Energy Physics, 1, Article No. 166.
https://doi.org/10.1007/JHEP01(2021)166
[10]  Ford, L.H. (2021) Cosmological Particle Production: A Review. Reports on Progress in Physics, 84, Article ID: 11690.
https://doi.org/10.1088/1361-6633/ac1b23
[11]  Kolb, E.W., Ling, S., Long, A.J. and Rosen, R.A. (2023) Cosmological Gravitational Particle Production of Massive Spin-2 Particles. arXiv: 2302.04390v1.
https://doi.org/10.1007/JHEP05(2023)181
[12]  Nitta, M. (2022) Relations among Topological Solitons. Physical Review D, 105, Article No. 105006.
https://doi.org/10.1103/PhysRevD.105.105006
[13]  Tanabashi, M., et al. (Particle Data Group) (2018) Review of Particle Physics. Physical Review D, 98, Article ID: 030001.
https://doi.org/10.1103/PhysRevD.98.030001
[14]  Arthur, K. (1995) Interaction Energy of Chern-Simons Vortices. Physics Letters B, 356, 509-515.
https://doi.org/10.1016/0370-2693(95)00830-E
[15]  Jacobs, L. and Rebbi, C. (1979) Interaction Energy of Superconducting Vortices. Physical Review B, 19, 4486-4494.
https://doi.org/10.1103/PhysRevB.19.4486
[16]  Caldwell, R., Dave, R. and Steinhardt, P. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585.
https://doi.org/10.1103/PhysRevLett.80.1582
[17]  Aartsen, M., et al. (2020) Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 125, Article ID: 121104.
[18]  Aguilar, M., et al. (2019) Towards Understanding the Origin of Cosmic-Ray Electrons. Physical Review Letters, 122, Article ID: 101101.
[19]  Brito, R., Chakrabartiet, S., et al. (2021) Probing Dark Matter with Small-Scale Astrophysical Observations. Proceeding of the US Community Study on the Future of Particle Physics Snowmass 2021, Snowmass, 14 July 2022. arXiv: 2203.15954v2.
[20]  Xue, X. and Xia, Z.Q. (2022) High-Precision Search for Dark Photon Dark Matter with the Parkes Pulsar Timing Array. Physical Review Research, 4, L012022.
https://doi.org/10.1103/PhysRevResearch.4.L012022
[21]  Antypas, D., Banerjee, A., et al. (2021) New Horizons: Scalar and Vector Ultralight Dark Matter. Proceeding of the US Community Study on the Future of Particle Physics Snowmass 2021, Snowmass, 14 July 2022. arXiv: 2203.14915v1.
[22]  Dixit, A.V., Chakram, S., He, K., Agrawal, A., Naik, R., Schuster, D. and Chou, A. (2019) Searching for Dark Matter with a Superconducting Qubit. Physical Review Letters, 126, Article ID: 141302.
https://doi.org/10.1103/PhysRevLett.126.141302

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413