全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应用于电子侦收的小型化高增益超宽带定向天线
Miniaturized High-Gain Ultra-Wideband (UWB)Directional Antenna Applied to Spying System Micro-Base Station

DOI: 10.12677/JA.2023.123004, PP. 29-38

Keywords: 电子侦收,定向天线,交叉极化,高增益,小型化,超宽带,Spying System, Directional Antenna, Cross Polarization, High Gain, Miniaturization, UWB

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决电子侦收对于超宽带的定向需求,本文提出了一种新型小尺寸、低剖面、双元蝶形超宽带(UWB)定向天线,高度仅为1/5波长,宽度为1/2波长。该天线采用±45?交叉极化的双元四叶草蝶形天线,通过两组类偶极子单元和矩形寄生枝节来扩展天线阻抗带宽,并用同轴线过孔馈电,最后在辐射单元底部加入反射器,实现定向辐射。仿真和实测结果表明,在2.84~4.78 GHz的工作频段内,所设计天线满足回波损耗大于10 dB,在1.8~6 GHz频段内均满足?5 dB以下,基本覆盖电子侦收频段;3 dB波瓣宽度为94?,阻抗带宽相对值为60%,带内增益为8.5~10.5 dBi,峰值增益可达10.5 dBi,辐射效率在70%左右,仿真与实测结果一致性良好,是一种可应用于电子侦收的小型高增益超宽带(UWB)定向天线。
In order to meet the directional demand of spying system for ultra-wideband (UWB), this paper proposes a novel small size, low profile, dual butterfly ultra-wideband (UWB) directional antenna, which is only 1/5 λ0 high and 1/2 λ0 wide. The antenna adopts a dual-element four-leaf clover butterfly antenna with ±45? cross-polarization. The impedance bandwidth of the antenna is extended by two groups of dipole-like elements and rectangular parasitic branches. The coaxial line is fed through a hole, and a reflector is added at the bottom of the radiation element to achieve directional radiation. The simulation and measurement results show that the designed antenna can meet the echo loss greater than 10 dB in the 2.84~4.78 GHz band and below ?5 dB in the 1.8~6 GHz band, basically covering the spying system. The 3 dB lobe width is 94?, the relative value of impedance bandwidth is 60%, the in-band gain is 8.5~10.5 dBi, the peak gain can reach 10.5 dBi, and the radiation efficiency is about 70%. The simulation results are in good agreement with the measured results. It is a small high-gain ultra-wideband (UWB) directional antenna applied to spying system micro-base station.

References

[1]  张需溥, 钟顺时. 蝶形微带天线的全波分析与宽带设计[J]. 电波科学学报, 2001, 16(4): 419-421, 450.
[2]  Li, H., Kang, L., Xu, Y. and Yin, Y.Z. (2016) Planar Dual-Band WLAN MIMO Antenna with High Isolation. Applied Computational Electromagnetics Society Journal, 31, 1410-1415.
[3]  Moeikham, P. and Akkaraekthalin, P. (2016) A Compact Printed Slot Antenna with High Out-of-Band Rejection for WLAN/WiMAX Applications. Radioengineering, 25, 672-679.
https://doi.org/10.13164/re.2016.0672
[4]  Awan, W.A., Zaidi, A., Hussain, N., Iqbal, A. and Baghdad, A. (2019) Stub Loaded, Low Profile UWB Antenna with Independently Controllable Notch-Bands. Microwave and Optical Technology Letters, 61, 2447-2454.
https://doi.org/10.1002/mop.31915
[5]  Aram, M.G., Aliakbarian, H. and Trefna, H.D. (2021) A Phased Array Applicator Based on Open Ridged-Waveguide Antenna for Microwave Hyperthermia. Microwave and Optical Technology Letters, 6, 3086-3091.
https://doi.org/10.1002/mop.33039
[6]  Li, D.H., Zhang, F.S., Xie, G.J., et al. (2020) Design of a Miniaturized UWB MIMO Vivaldi Antenna with Dual Band-Rejected Performance. IEICE Electronics Express, 17, 1-6.
https://doi.org/10.1587/elex.17.20200233
[7]  Nella, A., Bhowmick, A. and Rajagopal, M. (2021) A Novel Offset Feed Flared Monopole Quasi-Yagi High Directional UWB Antenna. International Journal of RF and Microwave Computer-Aided Engineering, 31, e22653.
https://doi.org/10.1002/mmce.22653
[8]  Yadav, S.V. and Chittora, A. (2021) A Compact Ultra-Wideband Transverse Electro-magnetic Mode Horn Antenna for High Power Microwave Applications. Microwave and Optical Technology Letters, 63, 264-270.
https://doi.org/10.1002/mop.32570
[9]  林昌禄. 天线工程手册[M]. 北京: 电子工业出版社, 2002.
[10]  Ban, Y.L., Liu, C.L., Chen, Z., Li, J.L.W. and Kang, K. (2014) Small-Size Multiresonant Octaband Antenna for LTE/WWAN Smartphone Applications. IEEE Antennas and Wireless Propagation Letters, 13, 619-622.
https://doi.org/10.1109/LAWP.2014.2313353
[11]  钟顺时. 微带天线理论与应用[M]. 西安: 西安电子科技大学出版社, 1991.
[12]  Ban, Y.L., Liu, C.L., Li, J.L.W. and Li, R. (2013) Small-Size Wideband Monopole with Distributed Inductive Strip for Seven-Band WWAN/LTE Mobile Phone. IEEE Antennas and Wireless Propagation Letters, 12, 7-10.
https://doi.org/10.1109/LAWP.2012.2233706
[13]  R.F. 哈林登. 计算电磁场的矩量法[M]. 长沙: 国防工业出版社, 1981.
[14]  张需溥, 钟顺时. 小型化蝶形微带天线的全波分析[J]. 上海大学学报(自然科学版), 2001, 7(2): 95-99.
[15]  Jin, G., Li, L., Wang, W. and Liao, S.W. (2020) Broadband Polarisation Reconfigurable Antenna Based on Crossed Dipole and Parasitic Ele-ments for LTE/sub-6GHz 5G and WLAN Applications. IET Microwaves, Antennas & Propagation, 14, 1469-1475.
https://doi.org/10.1049/iet-map.2019.1137
[16]  Kundu, S. (2020) A Compact Printed Ultra-Wideband Filtenna with Low Disper-sion for WiMAX and WLAN Interference Cancellation. Sādhanā, 45, Article No. 261.
https://doi.org/10.1007/s12046-020-01495-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413