全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Simulation for Enhancing Performance of MoS2 Hetero-Junction Solar Cell Employing Cu2O as Hole Transport Layer

DOI: 10.4236/msa.2023.149030, PP. 458-472

Keywords: Solar Cell, Thin Film, SCAPS-1D, Hetero-Junction, HTL, Defect Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS2) with an integrated Copper(I) Oxide (Cu2O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu2O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS2 solar cell without HTL, while the proposed solar cell (SC) utilizing Cu2O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS2 hetero-junction TFSC.

References

[1]  Ali, M.H., Al Mamun, M.A., Haque, M.D., Rahman, M.F., Hossain, M.K. and Touhidul Islam, A.Z.M. (2023) Performance Enhancement of an MoS2-Based Heterojunction Solar Cell with an In2Te3 Back Surface Field: A Numerical Simulation Approach. ACS Omega, 8, 7017-7029.
https://doi.org/10.1021/acsomega.2c07846
[2]  Patel, P.K. (2021) Device Simulation of Highly Efficient Eco-Friendly CH3NH3SnI3 Perovskite Solar Cell. Scientific Reports, 11, Article No. 3082.
https://doi.org/10.1038/s41598-021-82817-w
[3]  Nsafon, B.E.K., Owolabi, A.B., Butu, H.M., Roh, J.W., Suh, D. and Huh, J.S. (2020) Optimization and Sustainability Analysis of PV/Wind/Diesel Hybrid Energy System for Decentralized Energy Generation. Energy Strategy Reviews, 32, Article ID: 100570.
https://doi.org/10.1016/j.esr.2020.100570
[4]  Naveen, S., Aravind, S., Yamini, B., Vasudhareni, R., Gopinath, K.P., Arun, J. and Pugazhendhi, A. (2023) A Review on Solar Energy Intensified Biomass Valorization and Value-Added Products Production: Practicability, Challenges, Techno Economic and Lifecycle Assessment. Journal of Cleaner Production, 405, Article ID: 137028.
https://doi.org/10.1016/j.jclepro.2023.137028
[5]  Paraschiv, L.S. and Paraschiv, S. (2023) Contribution of Renewable Energy (Hydro, Wind, Solar and Biomass) to Decarbonization and Transformation of the Electricity Generation Sector for Sustainable Development. Energy Reports, 9, 535-544.
https://doi.org/10.1016/j.egyr.2023.07.024
[6]  Jha, V., Dasgupta, S. and Ganguly, A. (2023) Study of PbS Nanomaterial Sensitized ZnO Based Solar Cell Using SCAPS-1D Simulator. 2023 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, 29-31 May 2023, 1-3.
https://doi.org/10.1109/ISDCS58735.2023.10153556
[7]  Moon, M.M.A., Rahman, M.F., Hossain, J. and Ismail, A.B.M. (2019) Comparative Study of the Second Generation a-Si:H, CdTe, and CIGS Thin-Film Solar Cells. Advanced Materials Research, 1154, 102-111.
https://doi.org/10.4028/www.scientific.net/AMR.1154.102
[8]  Zaidi, B., Shekhar, C., Hadjoudja, B., Gagui, S. and Chouial, B. (2019) Optimization of Highly Efficient Monolayer MoSe2 Based Solar Cells. Acta Physica Polonica A, 136, 495-497.
https://doi.org/10.12693/APhysPolA.136.495
[9]  Zaidi, B., Shekhar, C., Hadjoudja, B., Gagui, S. and Saeed, M.A. (2021) Efficiency Enhancement of Transition Metal Dichalcogenide Based Solar Cells. Transactions on Electrical and Electronic Materials, 22, 687-690.
https://doi.org/10.1007/s42341-021-00284-6
[10]  Haque, M.D., Ali, M.H., Rahman, M.F. and Islam, A.Z.M.T. (2022) Numerical Analysis for the Efficiency Enhancement of MoS2 Solar Cell: A Simulation Approach by SCAPS-1D. Optical Materials, 131, Article ID: 112678.
https://doi.org/10.1016/j.optmat.2022.112678
[11]  Tsai, M.L., Su, S.H., Chang, J.K., Tsai, D.S., Chen, C.H., Wu, C.I., Li, L.J., Chen, L.J. and He, J.H. (2014) Monolayer MoS2 Heterojunction Solar Cells. ACS Nano, 8, 8317-8322.
https://doi.org/10.1021/nn502776h
[12]  Rashid, H., Rahman, K.S., Hossain, M.I., Tabet, N., Alharbi, F.H. and Amin, N. (2014) Prospects of Molybdenum Disulfide (MoS2) as an Alternative Absorber Layer Material in Thin Film Solar Cells from Numerical Modeling. Chalcogenide Letter, 11, 397-403.
[13]  Dey, M., Shahriar, M.F., Ali, A., Dey, M. and Das, N.K. (2019) Design and Optimization of an Efficient Molybdenum Disulfide (MoS2) Solar Cell with Tin Sulfide BSF. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, 7-9 February 2019, 1-5.
https://doi.org/10.1109/ECACE.2019.8679178
[14]  Casas, G., Cappelletti, M., Cédola, A., Soucase, B.M. and Peltzer y Blancá, E. (2017) Analysis of the Power Conversion Efficiency of Perovskite Solar Cells with Different Materials as Hole-Transport Layer by Numerical Simulations. Superlattices and Microstructures, 107, 136-143.
https://doi.org/10.1016/j.spmi.2017.04.007
[15]  Li, S., Cao, Y.L., Li, W.H. and Bo, Z.S. (2021) A Brief Review of Hole Transporting Materials Commonly Used in Perovskite Solar Cells. Rare Metals, 40, 2712-2729.
https://doi.org/10.1007/s12598-020-01691-z
[16]  Markose, K.K., Shaji, M., Bhatia, S., Nair, P.R., Saji, K.J., Antony, A. and Jayaraj, M.K. (2020) Novel Boron-Doped p-Type Cu2O Thin Films as a Hole-Selective Contact in c-Si Solar Cells. ACS Applied Materials & Interfaces, 12, 12972-12981.
https://doi.org/10.1021/acsami.9b22581
[17]  Burgelman, M. and Marlein, J. (2008) Analysis of Graded Band Gap Solar Cells with SCAPS. 23rd European Photovoltaic Solar Energy Conference, Valencia, 1-5 September 2008, 2151-2155.
[18]  Abdelfatah, M., El Sayed, A.M., Ismail, W., Ulrich, S., Sittinger, V. and El-Shaer, A. (2023) SCAPS Simulation of Novel Inorganic ZrS2/CuO Heterojunction Solar Cells. Scientific Reports, 13, Article No. 4553.
https://doi.org/10.1038/s41598-023-31553-4
[19]  Shah, D.K., KC, D., Muddassir, M., Akhtar, M.S., Kim, C.Y. and Yang, O.B. (2021) A Simulation Approach for Investigating the Performances of Cadmium Telluride Solar Cells Using Doping Concentrations, Carrier Lifetimes, Thickness of Layers, and Band Gaps. Solar Energy, 216, 259-265.
https://doi.org/10.1016/j.solener.2020.12.070
[20]  Doroody, C., Rahman, K.S., Rosly, H.N., Harif, M.N., Haque, F., Tiong, S.K. and Amin, N. (2020) Impact of High Resistivity Transparent (HRT) Layer in Cadmium Telluride Solar Cells from Numerical Simulation. Journal of Renewable and Sustainable Energy, 12, Article ID: 023702.
https://doi.org/10.1063/1.5132838
[21]  Devi, N., Parrey, K.A., Aziz, A. and Datta, S. (2018) Numerical Simulations of Perovskite Thin-Film Solar Cells Using a CdS Hole Blocking Layer. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36, Article ID: 04G105.
https://doi.org/10.1116/1.5026163
[22]  Nalianya, M.A., Awino, C., Barasa, H., Odari, V., Gaitho, F., Omogo, B. and Mageto, M. (2021) Numerical Study of Lead Free CsSn0.5Ge0.5I3 Perovskite Solar Cell by SCAPS-1D. Optik, 248, Article ID: 168060.
https://doi.org/10.1016/j.ijleo.2021.168060
[23]  Et-taya, L., Ouslimane, T. and Benami, A. (2020) Numerical Analysis of Earth-Abundant Cu2ZnSn(SxSe1-x)4 Solar Cells Based on Spectroscopic Ellipsometry Results by Using SCAPS-1D. Solar Energy, 201, 827-835.
https://doi.org/10.1016/j.solener.2020.03.070
[24]  Kale, A.J., Chaurasiya, R. and Dixit, A. (2021) Inorganic Lead-Free Cs2AuBiCl6 Perovskite Absorber and Cu2O Hole Transport Material Based Single-Junction Solar Cells with 22.18% Power Conversion Efficiency. Advanced Theory and Simulations, 4, Article ID: 2000224.
https://doi.org/10.1002/adts.202000224
[25]  Khatun, M.M., Sunny, A. and Al Ahmed, S.R. (2021) Numerical Investigation on Performance Improvement of WS2 Thin-Film Solar Cell with Copper Iodide as Hole Transport Layer. Solar Energy, 224, 956-965.
https://doi.org/10.1016/j.solener.2021.06.062
[26]  Chen, A. and Zhu, K. (2012) Computer Simulation of a-Si/c-Si Heterojunction Solar Cell with High Conversion Efficiency. Solar Energy, 86, 393-397.
https://doi.org/10.1016/j.solener.2011.10.015
[27]  Abdalmageed, H.I., Fedawy, M. and Aly, M.H. (2021) Effect of Absorber Layer Bandgap of CIGS-Based Solar Cell with (CdS/ZnS) Buffer Layer. Journal of Physics: Conference Series, 2128, Article ID: 012009.
https://doi.org/10.1088/1742-6596/2128/1/012009
[28]  Taguchi, M., Terakawa, A., Maruyama, E. and Tanaka, M. (2005) Obtaining a Higher Voc in HIT Cells. Progress in Photovoltaics: Research and Applications, 13, 481-488. https://doi.org/10.1002/pip.646
[29]  Glunz, S.W., Biro, D., Rein, S. and Warta, W. (1999) Field-Effect Passivation of the SiO2Si Interface. Journal of Applied Physics, 86, 683-691.
https://doi.org/10.1063/1.370784
[30]  Atowar Rahman, M. (2021) Enhancing the Photovoltaic Performance of Cd-Free Cu2ZnSnS4 Heterojunction Solar Cells Using SnS HTL and TiO2 ETL. Solar Energy, 215, 64-76.
https://doi.org/10.1016/j.solener.2020.12.020
[31]  Hossain, M.I., Alharbi, F.H., El-Mellouhi, F. and Tabet, N. (2018) Design Optimization of Solar Cell with Molybdenum Sulfide as Light Absorber. Journal of Photonics for Energy, 8, Article ID: 025501.
https://doi.org/10.1117/1.JPE.8.025501
[32]  Wu, F., Li, H., Yao, L., Lin, W., Lin, L., Chen, W., Wei, D., Liu, S., Chen, S. and Chen, G. (2021) In-situ Hydrothermal Growth of MoS2 Absorber Layer for Planar Heterojunction Solar Cells. Solar Energy, 230, 754-763.
https://doi.org/10.1016/j.solener.2021.10.064

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413