全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Correlation in Gamma Ray Burst Time Delays between Pairs of Radio Photons

DOI: 10.4236/ijaa.2023.133012, PP. 195-216

Keywords: Gamma-Ray Bursts, Photon Mass, Plasma

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a pilot study of time delays Δt in four GRB Radio Afterglow emissions, i.e., delays in the arrival times of radio waves of different frequencies emanating from eight GRB Radio Afterglows. Unlike in most studies on this phenomenon, we do not assume that this time delay is due to the Photon being endowed with a non-zero mass, but that this may very well be due to the interstellar space being a cold rarefied cosmic plasma, which medium’s Electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency (v) dependent speed of Light where this speed scales off as v-1. The said interaction is such that, lower frequency Photons will propagate at lower speeds than higher frequency Photons thus leading to the observed time delays in the arrivals times of Photons of different frequencies. In reasonable accord with the proposed model, we find that for four of these GRB afterglows, there is a strong unsolicited correlation between the observed time delays and the frequency. If this model can be corroborated by a large enough data set, there is hope that this same model might lead to a better understanding of the observed time delays in GRBs.

References

[1]  Maxwell, J.C. (1865) A Dynamical Theory of the Electromagnetic Field. Philosophical Transactions of the Royal Society of London, 155, 459-512.
https://doi.org/10.1098/rstl.1865.0008
[2]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891-921.
https://doi.org/10.1002/andp.19053221004
[3]  Tiesinga, E., Mohr, P.J., Newell, D.B. and Taylor, B.N. (2018) The 2018 CODATA Recommended Values of the Fundamental Physical Constants. Reviews of Modern Physics, 93, Article ID: 025010.
[4]  Salmon, L., Hanlon, L. and Martin-Carrillo, A. (2022) Two Classes of γ-Ray Bursts Distinguished within the First Second of Their Prompt Emission. Galaxies, 10, Article 78.
https://doi.org/10.3390/galaxies10040078
[5]  Lazzati, D. (2020) Short Duration γ-Ray Bursts and Their Outflows in Light of GW170817. Frontiers in Astronomy and Space Sciences, 7, Article 578849.
https://doi.org/10.3389/fspas.2020.578849
[6]  Zhang, B., Chai, Y.T., Zou, Y.C. and Wu, X.F. (2016) Constraining the Mass of the Photon with γ-Ray Bursts. Journal of High Energy Astrophysics, 11-12, 20-28.
https://doi.org/10.1016/j.jheap.2016.07.001
[7]  Zhang, S. and Ma, B.Q. (2015) Lorentz Violation from γ-Ray Bursts. Astroparticle Physics, 61, 108-112.
https://doi.org/10.1016/j.astropartphys.2014.04.008
[8]  Aleksić, J., Alvarez, E.A., Antonelli, L.A., Antoranz, P., et al. (2012) PG 1553+113: Five Years of Observations with MAGIC. The Astrophysical Journal, 748, Article ID: 46.
[9]  Chandra, P. and Frail, D.A. (2012) A Radio-Selected Sample of γ-Ray Burst After-glows. The Astrophysical Journal, 746, Article 156.
https://doi.org/10.1088/0004-637X/746/2/156
[10]  Abdo, A.A., Ackermann, M., Ajello, M., Allafort, A., et al. (2011) Insights into the High-Energy γ-Ray Emission of Markarian 501 from Extensive Multifrequency Ob-servations in the Fermi Era. The Astrophysical Journal, 727, Article 129.
[11]  Martínez, M. and Errando, M. (2009) A New Approach to Study Energy-Dependent Arrival Delays on Photons from Astrophysical Sources. Astroparticle Physics, 31, 226-232.
https://doi.org/10.1016/j.astropartphys.2009.01.005
[12]  Aharonian, F., Akhperjanian, A.G., Barres de Almeida, U., Bazer-Bachi, A.R., et al. (2008) Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304. Physical Review Letters, 101, Article ID: 170402.
[13]  Albert, J., Aliu, E., Anderhub, H., Antonelli, L.A., et al. (2008) Probing Quantum Gravity Using Photons from a Flare of the Active Galactic Nucleus Markarian 501 Observed by the MAGIC Telescope. Physics Letters B, 668, 253-257.
[14]  Matheson, T., Garnavich, P.M., Foltz, C., West, S., Williams, G., Falco, E., Calkins, M.L., Castander, F.J., Gawiser, E., Jha, S., Bersier, D. and Stanek, K.Z. (2002) The Spectroscopic Variability of GRB 021004. The Astrophysical Journal, 582, L5-L9.
https://doi.org/10.1086/367601
[15]  The CHIME/FRB Collaboration, Andersen, B.C., Bandura, K., Bhardwaj, M., et al. (2022) Sub-Second Periodicity in a Fast Radio Burst. Nature, 607, 256-259.
[16]  Wang, X.G., Li, L., Yang, Y.P., Luo, J.W., Zhang, B., Lin, D.B., Liang, E.W. and Qin, S.M. (2020) Is GRB 110715A the Progenitor of FRB 171209? The Astrophysical Journal Letters, 894, Article ID: L22.
https://doi.org/10.3847/2041-8213/ab8d1d
[17]  Ravi, V., Shannon, R.M. and Jameson, A. (2015) A Fast Radio Burst in the Direction of the Carina Dwarf Spheroidal Galaxy. The Astrophysical Journal Letters, 799, Article ID: L5.
https://doi.org/10.1088/2041-8205/799/1/L5
[18]  Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J. and Crawford, F. (2007) A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318, 777-780.
https://doi.org/10.1126/science.1147532
[19]  Nyambuya, G.G. (2017) Light Speed Barrier as a Cosmic Curtain Separating the Visible and Invisible Worlds. Prespacetime Journal, 8, 115-125.
[20]  Nyambuya, G.G. (2017) Planck Radiation Formula for Massive Photons (I). Prespacetime Journal, 8, 256-267.
[21]  Nyambuya, G.G. (2014) Gauge Invariant Massive Long Range and Long Lived Photons. Journal of Modern Physics, 5, 1902-1909.
https://doi.org/10.4236/jmp.2014.517185
[22]  Nyambuya, G.G. (2014) Are Photons Massless or Massive? Journal of Modern Physics, 5, 2111-2124.
https://doi.org/10.4236/jmp.2014.518207
[23]  Klebesadel, R.W., Strong, I.B. and Olsen, A. (1973) Observations of γ-Ray Bursts. Astrophysical Journal, 182, Article ID: L85.
https://doi.org/10.1086/181225
[24]  Chiao, M. (2013) No Flash in the Pan. Nature Physics, 9, 454.
https://doi.org/10.1038/nphys2724
[25]  Wei, J.J., Zhang, E.K., Zhang, S.B. and Wu, X.F. (2017) New Limits on the Photon Mass with Radio Pulsars in the Magellanic Clouds. Research in Astronomy and Astrophysics, 17, Article 13.
https://doi.org/10.1088/1674-4527/17/2/13
[26]  Han, J.L., van Straten, W., Lazio, J., Deller, A., Sobey, C., Xu, J., Schnitzeler, D., Imai, H., Chatterjee, S., Macquart, J.P., Kramer, M. and Cordes, J.M. (2015) Three-Dimensional Tomography of the Galactic and Extragalactic Magnetoionic Medium with the SKA. Proceedings of Advancing Astrophysics with the Square Kilometre Array—PoS(AASKA14), Giardina, May 2015, 1-16.
[27]  Xu, J. and Han, J.L. (2015) Extragalactic Dispersion Measures of Fast Radio Bursts. Research in Astronomy and Astrophysics, 15, 1629-1638.
https://doi.org/10.1088/1674-4527/15/10/002
[28]  Vierinen, J., Gustavsson, B., Hysell, D.L., Sulzer, M.P., Perillat, P. and Kudeki, E. (2017) Plasma Oscillations. Geophysical Research Letters, 44, 5301-5307.
https://doi.org/10.1002/2017GL073141
[29]  Kellogg, P.J., Goetz, K., Monson, S.J., Bale, S.D., Reiner, M.J. and Maksimovic, M. (2007) Plasma Waves. Journal of Geophysical Research: Space Physics, 114, A02107.
[30]  Proca, A. (1936) Sur la théorie du Positron. Comptes Rendus de l’Académie des Sciences, 202, 1366-1368.
[31]  Proca, A. (1936) Sur la Théorie du Positron. Comptes Rendus de l’Académie des Sciences, 202, 1490-1492.
[32]  Proca, A. (1936) Sur la Theorie Ondulatoire des Electrons Positifs et Negatifs. Journal de Physique et Le Radium, 7, 347-353.
https://doi.org/10.1051/jphysrad:0193600708034700
[33]  Proca, A. (1937) Particles Libres: Photons et Particules ‘Charge Pure’. Journal de Physique et Le Radium, 8, 23-28.
https://doi.org/10.1051/jphysrad:019370080102300
[34]  Proca, A. (1938) Thèorie non Relativiste des Particles a Spin Entire. Journal de Physique et Le Radium, 9, 61-66.
https://doi.org/10.1051/jphysrad:019380090206100
[35]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper (On the Electrodynamics of Moving Bodies). Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[36]  Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisyan-Grinbaum, E.K. and Spallicci, A.D.A.M. (2017) FRB 121102 Casts New Light on the Photon Mass. Physics Letters B, 768, 326-329.
https://doi.org/10.1016/j.physletb.2017.03.014
[37]  Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisyan-Grinbaum, E.K. and Spallicci, A.D.A.M. (2016) Photon Mass Limits from Fast Radio Bursts. Physics Letters B, 757, 548-552.
https://doi.org/10.1016/j.physletb.2016.04.035
[38]  Shao, L. and Zhang, B. (2017) Bayesian Framework to Constrain the Photon Mass with a Catalog of Fast Radio Bursts. Physical Review D, 95, Article ID: 123010.
https://doi.org/10.1103/PhysRevD.95.123010
[39]  Wu, X.F., Zhang, S.B., Gao, H., Wei, J.J., Zou, Y.C., Lei, W.H., Zhang, B., Dai, Z.G. and Mészáros, P. (2016) Constraints on the Photon Mass with Fast Radio Bursts. The Astrophysical Journal Letters, 822, Article ID: L15.
https://doi.org/10.3847/2041-8205/822/1/L15
[40]  Aghanim, N., Akrami, Y., Ashdown, M. and Collaboration, P. (2020) Planck 2018 Results VI. Cosmological Parameters. Astronomy & Astrophysics, 641, Article No. E1.
https://doi.org/10.1051/0004-6361/202039265
[41]  Wright, E.L. (2006) A Cosmology Calculator for the World Wide Web. Publications of the Astronomical Society of the Pacific, 118, 1711-1715.
https://doi.org/10.1086/510102
[42]  Jafelice, L.C. and Opher, R. (1992) The Origin of Intergalactic Magnetic Fields Due to Extragalactic Jets. Monthly Notices of the Royal Astronomical Society, 25, 135-151.
https://doi.org/10.1093/mnras/257.1.135
[43]  Fang, T., Buote, D.A., Humphrey, P.J., Canizares, C.R., Zappacosta, L., Maiolino, R., Tagliaferri, G. and Gastaldello, F. (2010) Confirmation of X-Ray Absorption by Warm-Hot Intergalactic Medium in the Sculptor Wall. The Astrophysical Journal, 714, 1715-1724.
https://doi.org/10.1088/0004-637X/714/2/1715
[44]  Essey, W., Ando, S. and Kusenko, A. (2011) Determination of Intergalactic Magnetic Fields from γ Ray Data. Astroparticle Physics, 35, 135-139.
https://doi.org/10.1016/j.astropartphys.2011.06.010
[45]  Ichiki, K., Inoue, S. and Takahash, K. (2008) Probing the Nature of the Weakest Intergalactic Magnetic Fields with the High-Energy Emission of γ-Ray Bursts. The Astrophysical Journal, 682, 127-134.
https://doi.org/10.1086/588275
[46]  Durrer, R. and Neronov, A. (2013) Cosmological Magnetic Fields: Their Generation, Evolution and Observation. The Astronomy and Astrophysics Review, 21, Article No. 62.
https://doi.org/10.1007/s00159-013-0062-7
[47]  Kerstin, E.K. (2013) Cosmological Magnetic Fields. Plasma Physics and Controlled Fusion, 55, Article ID: 124026.
https://doi.org/10.1088/0741-3335/55/12/124026
[48]  Lorrain, P. and Corson, D.R. (1962) Electromagnetic Fields and Waves. 2nd Edition, W.H. Freeman, New York.
[49]  Schaefer, B.E. (1999) Severe Limits on Variations of the Speed of Light with Frequency. Physical Review Letters, 82, 4964-4966.
https://doi.org/10.1103/PhysRevLett.82.4964
[50]  Stanek, K.Z., Matheson, T., Garnavich, P.M., Martini, P., Berlind, P., Caldwell, N., Challis, P., Brown, W.R., Schild, R., Krisciunas, K., Calkins, M.L., Lee, J.C., Hathi, N., Jansen, R.A., Windhorst, R., Echevarria, L., Eisenstein, D.J., Pindor, B., Olszewski, E.W., Harding, P., Holland, S.T. and Bersier, D. (2003) Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. The Astrophysical Journal, 591, L17-L20.
https://doi.org/10.1086/376976
[51]  Bloom, J.S., Berger, E., Kulkarni, S.R., Djorgovski, S.G. and Frail, D.A. (2003) The Redshift Determination of GRB 990506 and GRB 000418 with the Echellete Spectrograph Imager on Keck. The Astrophysical Journal, 125, 999-1005.
https://doi.org/10.1086/367805
[52]  Shirasaki, Y., Graziani, C., Matsuoka, M., Tamagawa, T., Torii, K., Sakamoto, T., Yoshida, A., Fenimore, E., Galassi, M., Tavenner, T. and Donaghy, T. (2002) GRB021004(=H2380): A Long GRB Localized by HETE in Near-Real Time. GCN Circulars Archive, 1565.
[53]  de Ugarte Postigo, A., Castro-Tirado, A.J., Gorosabel, J., Jóhannesson, G., Björnsson, G., Gudmundsson, E.H., Bremer, M., Pak, S., Tanvir, N., Castro Cerón, J.M., Guzyi, S., Jelínek, M., Klose, S., Pérez-Ramírez, D., Aceituno, J., Campo Bagatín, A., Covino, S., Cardiel, N., Fathkullin, T., Henden, A.A., Huferath, S., Kurata, Y., Malesani, D., Mannucci, F., Ruiz-Lapuente, P., Sokolov, V., Thiele, U., Wisotzki, L., Antonelli, L.A., Bartolini, C., Boattini, A., Guarnieri, A., Piccioni, A., Pizzichini, G., del Principe, M., di Paola, A., Fugazza, D., Ghisellini, G., Hunt, L., Konstantinova, T., Masetti, N., Palazzi, E., Pian, E., Stefanon, M., Testa, V. and Tristram, P.J. (2005) GRB 21004 Modelled by Multiple Energy Injections. Astronomy & Astrophysics, 443, 841-849.
https://doi.org/10.1051/0004-6361:20052898
[54]  Fox, D.W., Yost, S., Kulkarni, S.R., Torii, K., Kato, T., Yamaoka, H., Sako, M., Harrison, F.A., Sari, R., Price, P.A., Berger, E., Soderberg, A.M., Djorgovski, S.G., Barth, A.J., Pravdo, S.H., Frail, D.A., Gal-Yam, A., Lipkin, Y., Mauch, T., Harrison, C. and Buttery, H. (2003) Early Optical Emission from the γ-ray Burst of 4 October 2002. Nature, 422, 284-286.
https://doi.org/10.1038/nature01504
[55]  Heyl, J.S. and Perna, R. (2003) Broadband Modeling of GRB 021004. The Astrophysical Journal, 586, L13-L17.
https://doi.org/10.1086/374652
[56]  Fox, D.W. (2002) Grb021004: Optical Afterglow. GRB Coordinates Network.
[57]  Fynbo, J.P.U., Gorosabel, J., Smette, A., Fruchter, A., Hjorth, J., Pedersen, K., Levan, A., Burud, I., Sahu, K., Vreeswijk, P.M., Bergeron, E., Kouveliotou, C., Tanvir, N., Thorsett, S.E., Wijers, R.A.M.J., Castro Ceron, J.M., Castro-Tirado, A., Garnavich, P., Holland, S.T., Jakobsson, P., Moller, P., Nugent, P., Pian, E., Rhoads, J., Thomsen, B., Watson, D. and Woosley, S. (2005) On the Afterglow and Host Galaxy of GRB 021004: A Comprehenensive Study with the Hubble Space Telescope. The Astrophysical Journal, 633, 317-327.
https://doi.org/10.1086/432633
[58]  Castro-Tirado, A.J., Møller, P., García-Segura, G., Gorosabel, J., Pérez, E., de Ugarte Postigo, A., Solano, E., Barrado, D., Klose, S., Kann, D.A., Castro Cerón, J.M., Kouveliotou, C., Fynbo, J.P.U., Hjorth, J., Pedersen, H., Pian, E., Rol, E., Palazzi, E., Masetti, N., Tanvir, N.R., Vreeswijk, P.M., Andersen, M.I., Fruchter, A.S., Greiner, J., Wijers, R.A.M.J. and van den Heuvel, E.P.J. (2010) GRB 021004: Tomography of a γ-Ray Burst Progenitor and Its Host Galaxy. Astronomy & Astrophysics, 517, A61.
https://doi.org/10.1051/0004-6361/200913966
[59]  Christensen, L., Hjorth, J. and Gorosabel, J. (2005) Photometric Redshift of the GRB 981226 Host Galaxy. Astronomy & Astrophysics, 425, 913-926.
https://doi.org/10.1051/0004-6361:20040361
[60]  Gorosabel, J., Pérez-Ramírez, D., Sollerman, J., de Ugarte Postigo, A., Fynbo, J.P.U., Castro-Tirado, A.J., Jakobsson, P., Christensen, L., Hjorth, J., Jóhannesson, G., Guziy, S., Castro Cerón, J.M., Björnsson, G., Sokolov, V.V., Fatkhullin, T.A. and Nilsson, K. (2005) The GRB 030329 Host: A Blue Low Metallicity Subluminous Galaxy with Intense Star Formation. Astronomy & Astrophysics, 444, 711-721.
https://doi.org/10.1051/0004-6361:20052768
[61]  Chester, G.V. and Thellung, A. (1959) On the Electrical Conductivity of Metals. Proceedings of the Physical Society, 73, Article 745.
https://doi.org/10.1088/0370-1328/73/5/308
[62]  Kishore, R. (1968) Electrical Conductivity of Metals. Physica Status Solidi (b), 26, 133-138.
https://doi.org/10.1002/pssb.19680260112
[63]  Kittel, C. (1986) Introduction to Solid State Physics. 6 Edition, John Wiley & Sons, New York, 140-151.
[64]  Lenard, P. (1902) Ueber die lichtelektrische Wirkung. Annalen der Physik, 8, 149-198.
https://doi.org/10.1002/andp.19023130510

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413