全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation Study of CuO-Based Solar Cell with Different Buffer Layers Using SCAPS-1D

DOI: 10.4236/epe.2023.159016, PP. 307-314

Keywords: Solar cell, Buffer Layer, Efficiency, Hetero-Junction, Scaps-1D

Full-Text   Cite this paper   Add to My Lib

Abstract:

In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In2S3, WS2 and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS2 buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.

References

[1]  Gao, Y., Liu, H.W., Lin, Y. and Shao, G. (2011) Computational Design of High Efficiency FeSi2 Thin-Film Solar Cells. Thin Solid Films, 519, 8490-8495.
https://doi.org/10.1016/j.tsf.2011.05.030
[2]  Zheng, X., Li, W., Aberle, A.G. and Venkataraj, S. (2016) Efficiency Enhancement of Ultra-Thin Cu(In, Ga)Se2 Solar Cells: Optimizing the Absorber Bandgap Profile by Numerical Device Simulations. Current Applied Physics, 16, 1334-1341.
https://doi.org/10.1016/j.cap.2016.07.002
[3]  Hossain, M.K., Pervez, M.F., Tayyaba, S., Uddin, M.J., Mortuza, A.A., Mia, M.N.H., Manir, M.S., Karim, M.R. and Khan, M.A. (2017) Efficiency Enhancement of Natural Dye Sensitized Solar Cell by Optimizing Electrode Fabrication Parameters. Materials Science, 35, 816-823.
https://doi.org/10.1515/msp-2017-0086
[4]  Hossain, M.K., Pervez, M.F., Mia, M.N.H., Mortuza, A.A., Rahaman, M.S., Karim, M.R., Islam, J.M.M., Ahmed, F. and Khan, M.A. (2017) Effect of Dye Extracting Solvents and Sensitization Time on Photovoltaic Performance of Natural Dye Sensitized Solar Cells. Results in Physics, 7, 1516-1523.
https://doi.org/10.1016/j.rinp.2017.04.011
[5]  Zyoud, S.H., Zyoud, A.H., Ahmed, N.M. and Abdelkader, A.F.I. (2021) Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film-Based Solar Cell with Different Non-Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS-1D Software. Crystals, 11, Article No. 1454.
https://doi.org/10.3390/cryst11121454
[6]  Kaphle, A., Echeverria, E., Mcllroy, D.N. and Hari, P. (2020) Enhancement in the Performance of Nanostructured CuO-ZnO Solar Cells by Band Alignment. RSC Advances, 10, 7839-7854.
https://doi.org/10.1039/C9RA10771A
[7]  Iqbal, K., Ikram, M., Afzal, M. and Ali, S. (2018) Efficient, Low-Dimensional Nanocomposite Bilayer CuO/ZnO Solar Cell at Various Annealing Temperatures. Materials for Renewable and Sustainable Energy, 7, Article No. 4.
https://doi.org/10.1007/s40243-018-0111-2
[8]  Xing, H., Guo, L., Zhao, D. and Liu, Z. (2020) Enhancement in the Charge Transport and Photocorrosion Stability of CuO Photocathode: The Synergistic Effect of Spatially Separated Dual-Cocatalysts and P-N Heterojunction. Chemical Engineering Journal, 394, Article ID: 124907.
https://doi.org/10.1016/j.cej.2020.124907
[9]  Kumar, S.K., Suresh, S., Murugesan, S. and Raj, S.P. (2013) CuO Thin Films Made of Nanofibers for Solar Selective Absorber Applications. Solar Energy, 94, 299-304.
https://doi.org/10.1016/j.solener.2013.05.018
[10]  Wong, T., Zhuk, S., Masudy-Panah, S. and Dalapati, G. (2016) Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells. Materials, 9, Article No. 271.
https://doi.org/10.3390/ma9040271
[11]  Zandi, S., Saxena, P. and Gorji, N.E. (2020) Numerical Simulation of Heat Distribution in RGO Contacted Perovskite Solar Cells Using COMSOL. Solar Energy, 197, 105-110.
https://doi.org/10.1016/j.solener.2019.12.050
[12]  Gharibshahian, I., Orouji, A.A. and Sharbati, S. (2020) Towards High Efficiency Cd-Free Sb2Se3 Solar Cells by the Band Alignment Optimization. Solar Energy Materials and Solar Cells, 212, Article ID: 110581.
https://doi.org/10.1016/j.solmat.2020.110581
[13]  Hamri, Y.Z., Bourezig, Y., Medles, M., Ameri, M., Toumi, K., Ameri, I., Al-Douri, Y. and Voon, C.H. (2019) Improved Efficiency of Cu(In, Ga)Se2 Thin Film Solar Cells Using a Buffer Layer Alternative to CdS. Solar Energy, 178, 150-156.
https://doi.org/10.1016/j.solener.2018.12.023
[14]  Liu, Y., Sun, Y. and Rockett, A. (2012) A New Simulation Software of Solar Cells-Wxamps. Solar Energy Materials and Solar Cells, 98, 124-128.
https://doi.org/10.1016/j.solmat.2011.10.010
[15]  Marlein, J., Decock, K. and Burgelman, M. (2009) Analysis of Electrical Properties of CIGSSe and Cd-Free Buffer CIGSSe Solar Cells. Thin Solid Films, 517, 2353-2356.
https://doi.org/10.1016/j.tsf.2008.11.048
[16]  Nollet, P., Burgelman, M. and Degrave, S. (2000) The Back Contact Influence on Characteristics of CdTe/CdS Solar Cells. Thin Solid Films, 361-362, 293-297.
https://doi.org/10.1016/S0040-6090(99)00760-9
[17]  Khelifi, S., Verschraegen, J. and Burgelman, M. and Belgachi, A. (2008) Numerical Simulation of the Impurity Photovoltaic Effect in Silicon Solar Cells. Renewable Energy, 33, 293-298.
https://doi.org/10.1016/j.renene.2007.05.027
[18]  Burgelman, M., Verschraegen, J., Degrave, S. and Nollet, P. (2004) Modeling Thin-Film PV Devices. Progress in Photovoltaics: Research and Applications, 12, 143-153.
https://doi.org/10.1002/pip.524
[19]  Verschraegen, J. and Burgelman, M. (2007) Numerical Modeling of Intra-Band Tunneling for Heterojunction Solar Cells in SCAPS. Thin Solid Films, 515, 6276-6279.
https://doi.org/10.1016/j.tsf.2006.12.049
[20]  Decock, K., Khelifi, S. and Burgelman, M. (2011) Modelling Multivalent Defects in Thin Film Solar Cells. Thin Solid Films, 519, 7481-7484.
https://doi.org/10.1016/j.tsf.2010.12.039
[21]  Alhuda, N. and Algwari, Q. (2020) Simulation and Optimization of a Thin Film 3C-SiC Solar Cell Using SCAPS. Solid State Technology, 63, 1703.
[22]  Chelvanathan, P., Hossain, M.I. and Amin, N. (2010) Performance Analysis of Copper-Indium-Gallium-Diselenide (CIGS) Solar Cells with Various Buffer Layers by SCAPS. Current Applied Physics, 10, S387-S391.
https://doi.org/10.1016/j.cap.2010.02.018
[23]  Belarbia, F., Rahalb, W., Rached, D., benghabrita, S. and Adnanea, M. (2020) A Comparative Study of Different Buffer Layers for CZTS Solar Cell Using Scaps-1D Simulation Program. Optik, 216, Article ID: 164743.
https://doi.org/10.1016/j.ijleo.2020.164743

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413