全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrogen Embrittlement of Nitrogenating Layer on Martensitic Alloys

DOI: 10.4236/jmmce.2023.115013, PP. 161-171

Keywords: Hydrogen Embrittlement, Nitriding Coat, Cracks, Martensite Steel, Surface Hardness

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion through the surface and chemical gas-metal reaction. The inner nitriding interaction involves the simultaneous penetration and formation of a solid solution, as well as the interaction of nitrogen with specific alloying elements, resulting in the development of homogeneous and heterogeneous structures. Our study concludes that the observed intergranular hydrogen embrittlement and crack formation during the surface nitridation process of AMS 5719 martensite alloy steel can be attributed to the ammonium concentration of approximately 50% at a temperature of 530˚C.

References

[1]  Shen, Y.Z., Oh, K.H. and Lee, D.N. (2005) Nitriding of Steel in Potassium Nitrate Salt Bath. Scripta Materialia, 53, 1345-1349.
https://doi.org/10.1016/j.scriptamat.2005.08.032
[2]  Tsujimura, H., Goto, T. and Ito, Y. (2004) Electrochemical Surface Nitriding of Pure Iron by Molten Salt Electrochemical Process. Journal of Alloys and Compounds, 376, 246-250.
https://doi.org/10.1016/j.jallcom.2003.12.042
[3]  Li, H.Y., Luo, D.F., Yeung, C.F. and Lau, K.H. (1997) Microstructural Studies of QPQ Complex Salt Bath Heat-Treated Steels. Journal of Materials Processing Technology, 69, 45-49.
https://doi.org/10.1016/S0924-0136(96)00037-4
[4]  Yeung, C.F., Lau, K.H., Li, H.Y. and Luo, D.F. (1997) Advanced QPC Complex Salt Bath Heat Treatment. Journal of Materials Processing Technology, 66, 249-252.
https://doi.org/10.1016/S0924-0136(96)02535-6
[5]  Kochmanski, P., Długozima, M. and Baranowska, J. (2022) Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel. Materials, 15, Article 907.
https://doi.org/10.3390/ma15030907
[6]  Zinchenko, V.M., Syropyatov, V.Y., Barelko, V.V. and Bykov, L.A. (1997) Gas Nitriding in Catalytically Prepared Ammonia Media. Metal Science and Heat Treatment, 39, 280-284.
https://doi.org/10.1007/BF02467122
[7]  Zinchenko, V.M. and Georgievskaya, B.V. (1983) Nitrocarburization of Automobile Parts. NII Tavtoprom, Moscow. (In Russian)
[8]  Lin, Y.H., Wang, J., Zeng, D.Z., Huang, R.B. and Fan, H.Y. (2013) Advance Complex Liquid Nitriding of Stainless Steel AISI 321 Surface at 430C. Journal of Materials Engineering and Performance JMEPEG/ASM International, 22, 2567-2573.
https://link.springer.com/article/10.1007/s11665-013-0545-8
[9]  Aizawa, T., Yoshino, T., Morikawa, K. and Yoshihara, S.I. (2019) Microstructure of Plasma Nitrided AISI420 Martensitic Stainless Steel at 673 K. Crystals, 9, Article 60.
https://www.mdpi.com/journal/crystals
[10]  Mohan Rao, K.R., Trinadh, K. and Nouveau, C. (2019) Glow Discharge Plasma Nitriding of Low Alloy Steel. Materials Today: Proceedings, 19, 864-866.
https://doi.org/10.1016/j.matpr.2019.08.224
[11]  Owczarek, E. and Zakroczymski, T. (2000) Hydrogen Transport in a Duplex Stainless Steel. Acta Materialia, 48, 3059-3070.
https://doi.org/10.1016/S1359-6454(00)00122-1
[12]  Nagao, A., Smith, C.D., Dadfarnia, M., Sofronis, P. and Robertson, I.M. (2012) The Role of Hydrogen in Hydrogen Embrittlement Fracture of Lath Martensitic Steel. Acta Materialia, 60, 5182-5189.
https://doi.org/10.1016/j.actamat.2012.06.040
[13]  Kuzovnikov, M.A., Meng, H. and Tkacz, M. (2017) Nonstoichiometric Molybdenum Hydride. Journal of Alloys and Compounds, 694, 51-54.
https://doi.org/10.1016/j.jallcom.2016.09.288
[14]  Gong, P., Nutter, J., Rivera-Diaz-Del-Castillo, P.E.J. and Rainforth, W.M. (2020) Hydrogen Embrittlement through the Formation of Low-Energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels. Science Advances, 6, eabb6152.
https://doi.org/10.1126/sciadv.abb6152
[15]  Saeed, A., Khan, A.W., Jan, F., SHhah, H.U., Abrar, M., Zaka-Ul-Islam, M., Khalid, M. and Zakaullah, M. (2014) Optimization Study of Pulsed DC Nitrogen-Hydrogen Plasma in the Presence of an Active Screen Cage. Plasma Science and Technology, 16, 460-464.
https://doi.org/10.1088/1009-0630/16/5/04
[16]  Hinds, G., Zhao, J., Griffiths, A.J. and Turnbull, A. (2005) Hydrogen Diffusion in Super 13% Chromium Martensitic Stainless Steel. Corrosion, 61, 348-354.
https://www.researchgate.net/publication/240846169
[17]  Barrera, O., Bombac, D., Chen, Y., Daff, T.D., Galindo-Nava, E., Gong, P., Haley, D., Horton, R., Katzarov, I., Kermode, J.R., Liverani, C., Stopher, M. and Sweeney, F. (2018) Understanding and Mitigating Hydrogen Embrittlement of Steels: A Review of Experimental, Modelling and Design Progress from Atomistic to Continuum. Journal of Materials Science, 53, 6251-6290.
https://doi.org/10.1007/s10853-017-1978-5
[18]  Kato, H., Hirokawa, W., Todaka, Y. and Yasunaga, K. (2021) Improvement in Surface Roughness and Hardness for Carbon Steel by Slide Burnishing Process. Materials Sciences and Applications, 12, 171-181.
http://www.scirp.org/journal/Paperabs.aspx?PaperID=108947

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413