全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploring Inflation Options for Warm Dark Matter Coupled to the Higgs Boson

DOI: 10.4236/ijaa.2023.133013, PP. 217-235

Keywords: Warm Dark Matter, Inflation, Preheating, Reheating

Full-Text   Cite this paper   Add to My Lib

Abstract:

We extend the Standard Model with a scalar warm dark matter field S with an interaction \"\"with the Higgs boson . This warm dark matter scenario is in agreement with cosmological observations if S and come into thermal and diffusive equilibrium before the temperature drops below the Higgs boson mass mH. We study inflation driven by the fields or S, and also study preheating and reheating, in order to constrain the parameters of this extension of the Standard Model. It is remarkable that, with the current data, these models pass a closure test with no free parameters.

References

[1]  Particle Data Group, Zyla, P.A., et al. (2020) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 083C01.
https://doi.org/10.1093/ptep/ptaa104
[2]  Ema, J., Mukaida, K. and van de Vis, J. (2021) Renormalization Group Equations of Higgs-R2 Inflation. Journal of High Energy Physics, 2021, Article No. 109.
https://arxiv.org/pdf/2008.01096.pdf
https://doi.org/10.1007/JHEP02(2021)109
[3]  Hamada, Y., Kawai, H., Oda, K. and Park, S.C. (2014) Higgs Inflation from Standard Model Criticality.
https://arxiv.org/pdf/1408.4864.pdf
[4]  Hoeneisen, B. (2023) A Data Driven Solution to the Dark Matter Problem. European Journal of Applied Sciences, 11, 473-481.
[5]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[6]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015
[7]  Hoeneisen, B. (2022) Comments on Warm Dark Matter Measurements and Limits. International Journal of Astronomy and Astrophysics, 12, 94-109.
https://doi.org/10.4236/ijaa.2022.121006
[8]  Hoeneisen, B. (2023) A Study of Warm Dark Matter, the Missing Satellites Problem, and the UV Luminosity Cut-Off. International Journal of Astronomy and Astrophysics, 13, 25-38.
https://doi.org/10.4236/ijaa.2023.131002
[9]  Hoeneisen, B. (2020) What Is Dark Matter Made of? Presented at the 3rd World Summit on Exploring the Dark Side of the Universe. Guadeloupe Islands.
https://inspirehep.net/files/7cfb2bf406baf315315e389e6eff3809
[10]  Hoeneisen, B. (2021) Adding Dark Matter to the Standard Model. International Journal of Astronomy and Astrophysics, 11, 59-72.
https://doi.org/10.4236/ijaa.2021.111004
[11]  Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies. Journal of Modern Physics, 13, 932-948.
https://doi.org/10.4236/jmp.2022.136053
[12]  Hoeneisen, B. (2021) Active-Sterile Neutrino Oscillations and Leptogenesis. Journal of Modern Physics, 12, 1248-1266.
https://doi.org/10.4236/jmp.2021.129077
[13]  Baumann, D. (2012) TASI Lectures on Inflation.
https://arxiv.org/pdf/0907.5424.pdf
[14]  Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[15]  Bezrukov, F. and Shaposhnikov, M. (2008) The Standard Model Higgs Boson as the Inflaton.
https://arxiv.org/pdf/0710.3755.pdf
[16]  Shaposhnikov, M., Shkerin, A. and Zell, S. (2021) Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation. Physical Review D, 103, Article ID: 033006.
https://arxiv.org/pdf/2001.09088.pdf
https://doi.org/10.1103/PhysRevD.103.033006
[17]  Buttazzo, D., et al. (2013) Investigating the Near-Criticality of the Higgs Boson. Journal of High Energy Physics, 12, 89.
https://doi.org/10.1007/JHEP12(2013)089
[18]  Bian, L. (2013) RGE of the Higgs Mass in the Context of the SM.
https://arxiv.org/pdf/1303.2402.pdf
[19]  D’Onofrio, M. and Rummukainen, K. (2018) The Standard Model Cross-Over on the Lattice.
https://arxiv.org/pdf/1508.07161.pdf
[20]  Kawana, K. (2019) Multiple Point Principle of the Standard Model with Scalar Singlet Dark Matter and Right Handed Neutrinos. arXiv: 1411.2097.
[21]  Haba, N., Kaneta, K. and Takahashi, R. (2013) Planck Scale Boundary Conditions in the Standard Model with Singlet Scalar Dark Matter. arXiv: 1312.2089.
[22]  Costa, R., Morais, A.P., Sampaio, M.O.P. and Santos, R. (2015) Two-Loop Stability of a Complex Singlet Extended Standard Model. Physical Review D, 92, Article ID: 025024.
https://doi.org/10.1103/PhysRevD.92.025024
[23]  Green, D. (2014) Inflation and the Higgs Scalar (Lecture Notes).
https://arxiv.org/pdf/1412.2107.pdf
[24]  Maity, D. and Saha, P. (2019) CMB Constraints on Dark Matter Phenomenology via Reheating in Minimal Plateau Inflation. Physics of the Dark Universe, 25, Article ID: 100317.
https://arxiv.org/pdf/1804.10115.pdf
https://doi.org/10.1016/j.dark.2019.100317
[25]  Greene, P.B., Kofman, L., Linde, A. and Starobinsky, A.A. (1997) Structure of Resonance in Preheating after Inflation. Physical Review D, 56, 6175.
https://arxiv.org/pdf/hep-ph/9705347.pdf
https://doi.org/10.1103/PhysRevD.56.6175
[26]  Lozanov, K. (2019) Lectures on Reheating after Inflation.
https://arxiv.org/pdf/1907.04402.pdf
[27]  Cai, R.G., Guo, Z.K. and Wang, S.J. (2018) Reheating Phase Diagram for Single-Field Slow-Roll Inflationary Models.
https://arxiv.org/pdf/1501.07743.pdf
[28]  Gopica, K. and Desai, S. (2023) Constraints on Self-Interacting Dark Matter from Relaxed Galaxy Groups. Physics of the Dark Universe, 42, Article ID: 101291.
https://arxiv.org/pdf/2307.05880.pdf

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413