全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Computerized Cognitive Test for the Detection of Mild Cognitive Impairment and Its Association with Neurodegeneration in Alzheimer’s Disease Prone Brain Regions

DOI: 10.4236/aad.2023.123004, PP. 38-54

Keywords: Mild Cognitive Impairment, Proactive Semantic Interference, MRI Volume, Cortical Thickness, LASSI-L

Full-Text   Cite this paper   Add to My Lib

Abstract:

During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to measure the early brain-behavior manifestations of AD and that correlate with biomarkers of neurodegeneration are needed to identify and monitor individuals at risk for dementia. Weak sensitivity to early cognitive change has been a major limitation of traditional cognitive assessments. In this study, we focused on expanding our previous work by determining whether a digitized cognitive stress test, the Loewenstein-Acevedo Scales for Semantic Interference and Learning, Brief Computerized Version (LASSI-BC) could differentiate between Cognitively Unimpaired (CU) and amnestic Mild Cognitive Impairment (aMCI) groups. A second focus was to correlate LASSI-BC performance to volumetric reductions in AD-prone brain regions. Data was gathered from 111 older adults who were comprehensively evaluated and administered the LASSI-BC. Eighty-seven of these participants (51 CU; 36 aMCI) underwent MR imaging. The volumes of 12 AD-prone brain regions were related to LASSI-BC and other memory tests correcting for False Discovery Rate (FDR). Results indicated that, even after adjusting for initial learning ability, the failure to recover from proactive semantic interference (frPSI) on the LASSI-BC differentiated between CU and aMCI groups. An optimal combination of frPSI and initial learning strength on the LASSI-BC yielded an area under the ROC curve of 0.876 (76.1% sensitivity, 82.7% specificity). Further, frPSI on the LASSI-BC was associated with volumetric reductions in the hippocampus, amygdala, inferior temporal lobes, precuneus, and posterior cingulate.

References

[1]  Zetterberg, H. and Blennow, K. (2021) Moving Fluid Biomarkers for Alzheimer’s Disease from Research Tools to Routine Clinical Diagnostics. Molecular Neurodegeneration, 16, Article No. 10.
https://doi.org/10.1186/s13024-021-00430-x
[2]  Johnson, K.A., Fox, N.C., Sperling, R.A. and Klunk, W.E. (2012) Brain Imaging in Alzheimer’s Disease. Cold Spring Harbor Perspectives in Medicine, 2, a006213.
https://doi.org/10.1101/cshperspect.a006213
[3]  Frisoni, G.B., Boccardi, M., Barkhof, F., Blennow, K., Cappa, S., Chiotis, K., Démonet, J.F., Garibotto, V., Giannakopoulos, P., Gietl, A., Hansson, O., Herholz, K., Jack, C.R., Jr, Nobili, F., Nordberg, A., Snyder, H.M., Ten Kate, M., Varrone, A., Albanese, E., Becker, S. and Winblad, B. (2017) Strategic Roadmap for an Early Diagnosis of Alzheimer’s Disease Based on Biomarkers. The Lancet. Neurology, 16, 661-676.
https://doi.org/10.1016/S1474-4422(17)30159-X
[4]  Kantarci, K., Weigand, S.D., Przybelski, S.A., Preboske, G.M., Pankratz, V.S., Vemuri, P., Senjem, M.L., Murphy, M.C., Gunter, J.L., Machulda, M.M., Ivnik, R.J., Roberts, R.O., Boeve, B.F., Rocca, W.A., Knopman, D.S., Petersen, R.C. and Jack, C.R. (2013) MRI and MRS Predictors of mild Cognitive Impairment in a Population-Based Sample. Neurology, 81, 126-133.
https://doi.org/10.1212/WNL.0b013e31829a3329
[5]  Loewenstein, D.A., Curiel, R.E., Duara, R. and Buschke, H. (2018) Novel Cognitive Paradigms for the Detection of Memory Impairment in Preclinical Alzheimer’s Disease. Assessment, 25, 348-359.
https://doi.org/10.1177/1073191117691608
[6]  Tang, E.Y., Brayne, C., Albanese, E. and Stephan, B.C. (2015) Mild Cognitive Impairment Definitions: More Evolution than Revolution. Neurodegenerative Disease Management, 5, 11-17.
https://doi.org/10.2217/nmt.14.42
[7]  Bondi, M.W. and Smith, G.E. (2014) Mild Cognitive Impairment: A Concept and Diagnostic Entity in Need of Input from Neuropsychology. Journal of the International Neuropsychological Society: JINS, 20, 129-134.
https://doi.org/10.1017/S1355617714000010
[8]  Curiel Cid, R.E. and Loewenstein, D.A. (2022) Salient Cognitive Paradigms to Assess Pre-Clinical Alzheimer’s Disease. Neurotherapeutics, 19, 89-98.
[9]  Rentz, D.M., Parra Rodriguez, M.A., Amariglio, R., Stern, Y., Sperling, R. and Ferris, S. (2013) Promising Developments in Neuropsychological Approaches for the Detection of Preclinical Alzheimer’s Disease: A Selective Review. Alzheimer’s Research & Therapy, 5, Article No. 58.
https://doi.org/10.1186/alzrt222
[10]  Brooks, L.G. and Loewenstein, D.A. (2010) Assessing the Progression of Mild Cognitive Impairment to Alzheimer’s Disease: Current Trends and Future Directions. Alzheimer’s Research & Therapy, 2, Article No. 28.
https://doi.org/10.1186/alzrt52
[11]  Loewenstein, D.A., Curiel, R.E., Greig, M.T., Bauer, R.M., Rosado, M., Bowers, D., Wicklund, M., Crocco, E., Pontecorvo, M., Joshi, A.D., Rodriguez, R., Barker, W.W., Hidalgo, J. and Duara, R. (2016) A Novel Cognitive Stress Test for the Detection of Preclinical Alzheimer Disease: Discriminative Properties and Relation to Amyloid Load. The American Journal of Geriatric Psychiatry, 24, 804-813.
https://doi.org/10.1016/j.jagp.2016.02.056
[12]  Curiel Cid, R.E., Crocco, E.A., Duara, R., Garcia, J.M., Rosselli, M., DeKosky, S.T., Smith, G., Bauer, R., Chirinos, C.L., Adjouadi, M., Barker, W. and Loewenstein, D.A. (2020) A Novel Method of Evaluating Semantic Intrusion Errors to Distinguish between Amyloid Positive and Negative Groups on the Alzheimer’s Disease Continuum. Journal of Psychiatric Research, 124, 131-136.
https://doi.org/10.1016/j.jpsychires.2020.02.008
[13]  Curiel Cid, R.E., Loewenstein, D.A., Rosselli, M., Matias-Guiu, J.A., Piña, D., Adjouadi, M., Cabrerizo, M., Bauer, R.M., Chan, A., DeKosky, S.T., Golde, T., Greig-Custo, M.T., Lizarraga, G., Peñate, A. and Duara, R. (2019) A Cognitive Stress Test for Prodromal Alzheimer’s Disease: Multiethnic Generalizability. Alzheimer’s & Dementia (Amsterdam, Netherlands), 11, 550-559.
https://doi.org/10.1016/j.dadm.2019.05.003
[14]  Crocco, E.A., Curiel Cid, R., Kitaigorodsky, M., Grau, G.A., Garcia, J.M., Duara, R., Barker, W., Chirinos, C.L., Rodriguez, R. and Loewenstein, D.A. (2021) Intrusion Errors and Progression of Cognitive Deficits in Older Adults with Mild Cognitive Impairment and PreMCI States. Dementia and Geriatric Cognitive Disorders, 50, 135-142.
https://doi.org/10.1159/000512804
[15]  Loewenstein, D.A., Curiel, R.E., DeKosky, S., Bauer, R.M., Rosselli, M., Guinjoan, S.M., Adjouadi, M., Peñate, A., Barker, W.W., Goenaga, S., Golde, T., Greig-Custo, M.T., Hanson, K.S., Li, C., Lizarraga, G., Marsiske, M. and Duara, R. (2018) Utilizing Semantic Intrusions to Identify Amyloid Positivity in Mild Cognitive Impairment. Neurology, 91, e976-e984.
https://doi.org/10.1212/WNL.0000000000006128
[16]  Kitaigorodsky, M., Curiel Cid, R.E., Crocco, E., Gorman, K.L., González-Jiménez, C.J., Greig-Custo, M., Barker, W.W., Duara, R. and Loewenstein, D.A. (2021) Changes in LASSI-L Performance over Time among Older Adults with Amnestic MCI and Amyloid Positivity: A Preliminary Study. Journal of Psychiatric Research, 143, 98-105.
https://doi.org/10.1016/j.jpsychires.2021.08.033
[17]  Loewenstein, D.A., Curiel, R.E., DeKosky, S., Rosselli, M., Bauer, R., Grieg-Custo, M., Penate, A., Li, C., Lizagarra, G., Golde, T., Adjouadi, M. and Duara, R. (2017) Recovery from Proactive Semantic Interference and MRI Volume: A Replication and Extension Study. Journal of Alzheimer’s Disease: JAD, 59, 131-139.
https://doi.org/10.3233/JAD-170276
[18]  Loewenstein, D.A., Curiel, R.E., Wright, C., Sun, X., Alperin, N., Crocco, E., Czaja, S.J., Raffo, A., Penate, A., Melo, J., Capp, K., Gamez, M. and Duara, R. (2017) Recovery from Proactive Semantic Interference in Mild Cognitive Impairment and Normal Aging: Relationship to Atrophy in Brain Regions Vulnerable to Alzheimer’s Disease. Journal of Alzheimer’s Disease: JAD, 56, 1119-1126.
https://doi.org/10.3233/JAD-160881
[19]  Zheng, D.D., Curiel Cid, R.E., Duara, R., Kitaigorodsky, M., Crocco, E. and Loewenstein, D.A. (2021) Semantic Intrusion Errors as a Function of Age, Amyloid, and Volumetric Loss: A Confirmatory Path Analysis. International Psychogeriatrics, 34, 991-1001.
https://doi.org/10.1017/S1041610220004007
[20]  Manly, J.J. (2005) Advantages and Disadvantages of Separate Norms for African Americans. The Clinical Neuropsychologist, 19, 270-275.
https://doi.org/10.1080/13854040590945346
[21]  Babulal, G.M., Quiroz, Y.T., Albensi, B.C., Arenaza-Urquijo, E., Astell, A.J., Babiloni, C., Bahar-Fuchs, A., Bell, J., Bowman, G.L., Brickman, A.M., Chételat, G., Ciro, C., Cohen, A.D., Dilworth-Anderson, P., Dodge, H.H., Dreux, S., Edland, S., Esbensen, A., Evered, L., Ewers, M. and International Society to Advance Alzheimer’s Research and Treatment, Alzheimer’s Association (2019) Perspectives on Ethnic and Racial Disparities in Alzheimer’s Disease and Related Dementias: Update and Areas of Immediate Need. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 15, 292-312.
https://doi.org/10.1016/j.jalz.2018.09.009
[22]  Aslam, R.W., Bates, V., Dundar, Y., Hounsome, J., Richardson, M., Krishan, A. and Sikdar, S. (2018) A Systematic Review of the Diagnostic Accuracy of Automated Tests for Cognitive Impairment. International Journal of Geriatric Psychiatry, 33, 561-575.
https://doi.org/10.1002/gps.4852
[23]  Tsoy, E., Zygouris, S. and Possin, K.L. (2021) Current State of Self-Administered Brief Computerized Cognitive Assessments for Detection of Cognitive Disorders in Older Adults: A Systematic Review. The Journal of Prevention of Alzheimer’s Disease, 8, 267-276.
https://doi.org/10.14283/jpad.2021.11
[24]  de Jager, C.A., Schrijnemaekers, A.C., Honey, T.E. and Budge, M.M. (2009) Detection of MCI in the Clinic: Evaluation of the Sensitivity and Specificity of a Computerised Test Battery, the Hopkins Verbal Learning Test and the MMSE. Age and Ageing, 38, 455-460.
https://doi.org/10.1093/ageing/afp068
[25]  Mielke, M.M., Machulda, M.M., Hagen, C.E., Edwards, K.K., Roberts, R.O., Pankratz, V.S., Knopman, D.S., Jack, C.R. and Petersen, R.C. (2015) Performance of the CogState Computerized Battery in the Mayo Clinic Study on Aging. Alzheimer’s &Dementia: The Journal of the Alzheimer’s Association, 11, 1367-1376.
https://doi.org/10.1016/j.jalz.2015.01.008
[26]  Saxton, J., Morrow, L., Eschman, A., Archer, G., Luther, J. and Zuccolotto, A. (2009) Computer Assessment of Mild Cognitive Impairment. Postgraduate Medicine, 121, 177-185.
https://doi.org/10.3810/pgm.2009.03.1990
[27]  Juncos-Rabadán, O., Pereiro, A.X., Facal, D., Reboredo, A. and Lojo-Seoane, C. (2014) Do the Cambridge Neuropsychological Test Automated Battery Episodic Memory Measures Discriminate Amnestic Mild Cognitive Impairment? International Journal of Geriatric Psychiatry, 29, 602-609.
https://doi.org/10.1002/gps.4042
[28]  Zelazo, P.D., Anderson, J.E., Richler, J., Wallner-Allen, K., Beaumont, J.L., Conway, K.P., Gershon, R. and Weintraub, S. (2014) NIH Toolbox Cognition Battery (CB): Validation of Executive Function Measures in Adults. Journal of the International Neuropsychological Society: JINS, 20, 620-629.
https://doi.org/10.1017/S1355617714000472
[29]  Chan, J., Kwong, J., Wong, A., Kwok, T. and Tsoi, K. (2018) Comparison of Computerized and Paper-and-Pencil Memory Tests in Detection of Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of Diagnostic Studies. Journal of the American Medical Directors Association, 19, 748-756.e5.
https://doi.org/10.1016/j.jamda.2018.05.010
[30]  Curiel Cid, R.E., Crocco, E.A., Kitaigorodsky, M., Beaufils, L., Peña, P.A., Grau, G., Visser, U. and Loewenstein, D.A. (2021) A Novel Computerized Cognitive Stress Test to Detect Mild Cognitive Impairment. The Journal of Prevention of Alzheimer’s Disease, 8, 135-141.
https://doi.org/10.14283/jpad.2021.1
[31]  Capp, K.E., Curiel Cid, R.E., Crocco, E.A., Stripling, A., Kitaigorodsky, M., Sierra, L.A., Melo, J.G. and Loewenstein, D.A. (2020) Semantic Intrusion Error Ratio Distinguishes between Cognitively Impaired and Cognitively Intact African American Older Adults. Journal of Alzheimer’s Disease: JAD, 73, 785-790.
https://doi.org/10.3233/JAD-191022
[32]  Dickerson, B.C., Stoub, T.R., Shah, R.C., Sperling, R.A., Killiany, R.J., Albert, M.S., Hyman, B.T., Blacker, D. and Detoledo-Morrell, L. (2011) Alzheimer-Signature MRI Biomarker Predicts AD Dementia in Cognitively Normal Adults. Neurology, 76, 1395-1402.
https://doi.org/10.1212/WNL.0b013e3182166e96
[33]  Morris, J.C. (1993) The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology, 43, 2412-2414.
https://doi.org/10.1212/WNL.43.11.2412-a
[34]  Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric research, 12, 189-198.
https://doi.org/10.1016/0022-3956(75)90026-6
[35]  American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition.
https://doi.org/10.1176/appi.books.9780890425596
[36]  Crocco, E.A., Loewenstein, D.A., Curiel, R.E., Alperin, N., Czaja, S.J., Harvey, P.D., Sun, X., Lenchus, J., Raffo, A., Peñate, A., Melo, J., Sang, L., Valdivia, R. and Cardenas, K. (2018) A Novel Cognitive Assessment Paradigm to Detect Pre-Mild Cognitive Impairment (PreMCI) and the Relationship to Biological Markers of Alzheimer’s Disease. Journal of Psychiatric Research, 96, 33-38.
https://doi.org/10.1016/j.jpsychires.2017.08.015
[37]  Benedict, R.H., Schretlen, D., Groninger, L. and Brandt, J. (1998) Hopkins Verbal Learning Test-Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability. The Clinical Neuropsychologist, 12, 43-55.
https://doi.org/10.1076/clin.12.1.43.1726
[38]  Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., Hubbard, J.L., Koepsell, T.D., Morris, J.C., Kukull, W.A. and NIA Alzheimer’s Disease Centers (2007) The National Alzheimer’s Coordinating Center (NACC) Database: The Uniform Data Set. Alzheimer Disease and Associated Disorders, 21, 249-258.
https://doi.org/10.1097/WAD.0b013e318142774e
[39]  Binetti, G., Magni, E., Cappa, S.F., Padovani, A., Bianchetti, A. and Trabucchi, M. (1995) Semantic Memory in Alzheimer’s Disease: An Analysis of Category Fluency. Journal of Clinical and Experimental Neuropsychology, 17, 82-89.
https://doi.org/10.1080/13803399508406584
[40]  Wechsler, D. (2008) Wechsler Adult Intelligence Scale-Fourth Edition Administration and Scoring Manual. Pearson, San Antonio.
https://doi.org/10.1037/t15169-000
[41]  Reitan, R.M. (1958) Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Perceptual and Motor Skills, 8, 271-276.
https://doi.org/10.2466/pms.1958.8.3.271
[42]  Benjamini, Y. and Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289-300.
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
[43]  Kitaigorodsky, M., Loewenstein, D., Curiel Cid, R., Crocco, E., Gorman, K. and González-Jiménez, C. (2021b) A Teleneuropsychology Protocol for the Cognitive Assessment of Older Adults during COVID-19. Frontiers in Psychology, 12, Article ID: 651136.
https://doi.org/10.3389/fpsyg.2021.651136
[44]  Crocco, E., Curiel-Cid, R.E., Kitaigorodsky, M., González-Jiménez, C.J., Zheng, D., Duara, R. and Loewenstein, D.A. (2020) A Brief Version of the LASSI-L Detects Prodromal Alzheimer’s Disease States. Journal of Alzheimer’s Disease: JAD, 78, 789-799.
https://doi.org/10.3233/JAD-200790

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413