全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of the Partial Substitution of Industrial Clinker by Volcanic Lava Powder from Nyiragongo Volcano on the Physical Properties of Mortars

DOI: 10.4236/jmmce.2023.115014, PP. 172-196

Keywords: Pozzolan, Cement, Alite, Nyiragongo, ASR (Alkali-Silica Reaction)

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluates the pozzolanicity of Nyiragongo volcano lava flows in Congo by an indirect method using mortars with different rock powder proportions. The clinker used is a locally produced alite clinker, whose chemical and mineralogical composition was determined by XRF, Bogue and Taylor formulas. The lava flows were collected from the 2002, 2010 and 2021 eruption sites, and were characterized by XRF, CIPW normative mineralogy and geomechanical tests. The results show that Nyiragongo rocks are ultrabasic, silica- and alkali-rich, and contain minerals like nepheline, wollastonite and leucite. They satisfy the natural pozzolan criterion, and have pozzolanic activity indices above 70%. These rocks also have high RC and LA resistances, ranging from 190 MPa to 45 MPa, and from 18% to 32.6%, respectively. The rock powder addition in the mortars reduces mechanical resistances and increases setting times, except for a 5% replacement rate, which speeds up hardening. Nyiragongo lava can be used as a pozzolanic addition to produce a CEM II/B-P 32.5 cement.

References

[1]  Andrew, R.M. (2019) Global CO2 Emissions from Cement Production, 1928-2018. Earth System Science Data, 11, 1675-1710.
https://doi.org/10.5194/essd-11-1675-2019
[2]  Aıtcin, P.C. (2000) Cements of Yesterday and Today: Concrete of Tomorrow. Cement and Concrete Research, 30, 1349-1359.
https://doi.org/10.1016/S0008-8846(00)00365-3
[3]  Qizi, A.H.S. and Barotaliyevna, C.N. (2023) Cements of Yesterday and Today: Concrete of Tomorrow. American Journal of Engineering, Mechanics and Architecture, 1, 18-21.
https://grnjournal.us/index.php/AJEMA/article/view/279
[4]  Mehta, P.K. (1987) Natural Pozzolans: Supplementary Cementing Materials in Concrete. CANMET Special Publication, 86, 1-33.
[5]  Nicoara, A.I., Stoica, A.E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., Gulgun, M.A., Bundur, Z.B., Ciuca, I. and Vasile, B.S. (1954) End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials, 13, Article 1954.
https://doi.org/10.3390/ma13081954
[6]  Neville, A.M. (1995) Properties of concrete. Longman, London.
[7]  Mohammed, G.A. and Al-Mashhadi, S.A.A. (2020) Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete. Civil Engineering Journal, 6, 1155-1165.
https://doi.org/10.28991/cej-2020-03091537
[8]  Malhotra, M. (1987) Supplementary Cementing Materials. CANMET Special Publication SP 86-8E, Energy, Mines and Resources. Ottawa.
[9]  McCarthy, M.J. and Dyer, T.D. (2019) 9—Pozzolanas and Pozzolanic Materials. In: Hewlett, P.C. and Liska, M., Eds., Lea’s Chemistry of Cement and Concrete (Fifth Edition), Butterworth-Heinemann, Oxford, 363-467.
https://doi.org/10.1016/B978-0-08-100773-0.00009-5
[10]  Metha, P.K. (1983) Mechanism of Sulfate Attack on Portland Cement Concrete— Another Look. Cement and Concrete Research, 13, 401-406.
https://doi.org/10.1016/0008-8846(83)90040-6
[11]  Elahi, M.M.A., Shearer, C.R., Reza, A.N.R., Saha, A.K., Khan, M.N.N., Hossain, M.M. and Sarker, P.K. (2021) Improving the Sulfate Attack Resistance of Concrete by Using Supplementary Cementitious Materials (SCMs): A Review. Construction and Building Materials, 281, Article ID: 122628.
https://doi.org/10.1016/j.conbuildmat.2021.122628
[12]  Rodriguez-Camacho, R.E. and Uribe-Afif, R. (2002) Importance of Using the Natural Pozzolans on Concrete Durability. Cement and Concrete Research, 32, 1851-1858.
https://doi.org/10.1016/S0008-8846(01)00714-1
[13]  Binici, H., Yardim, Y., Aksogan, O., Resatoglu, R., Dincer, A. and Karrpuz, A. (2020) Durability Properties of Concretes Made with Sand and Cement Size Basalt. Sustainable Materials and Technologies, 23, e00145.
https://doi.org/10.1016/j.susmat.2019.e00145
[14]  Mavonga, T., Zana, N. and Durrheim, R.J. (2010) Studies of Crustal Structure, Seismic Precursors to Volcanic Eruptions and Earthquake Hazard in the Eastern Provinces of the Democratic Republic of Congo. Journal of African Earth Sciences, 58, 623-633.
https://doi.org/10.1016/j.jafrearsci.2010.08.008
[15]  Mulibo, G.D. (2022) Seismotectonics and Active Faulting of Usangu Basin, East African Rift System, with Implications for the Rift Propagation. Tectonophysics, 838, Article ID: 229498.
https://doi.org/10.1016/j.tecto.2022.229498
[16]  Hertogen, J., Vanlerberghe, L. and Namegabe, M.R. (1985) Geochemical Evolution of the Nyiragongo Volcano (Virunga, Western African Rift, Zaire). Bulletin of the Geological Society of Finland, 57, 21-35.
https://doi.org/10.17741/bgsf/57.1-2.002
[17]  Pitcavage, E., Furman, T., Nelson, W.R., Kalegga, P.K. and Barifaijo, E. (2021) Petrogenesis of Primitive Lavas from the Toro Ankole and Virunga Volcanic Provinces: Metasomatic Mineralogy beneath East Africa’s Western Rift. Lithos, 396-397, Article ID: 106192.
https://doi.org/10.1016/j.lithos.2021.106192
[18]  Furman, T. (2007) Geochemistry of East African Rift Basalts: An Overview. Journal of African Earth Sciences, 48, 147-160.
https://doi.org/10.1016/j.jafrearsci.2006.06.009
[19]  Rooney, T.O. (2020) The Cenozoic Magmatism of East Africa: Part V-Magma Sources and Processes in the East African Rift. Lithos, 360-361, Article ID: 105296.
https://doi.org/10.1016/j.lithos.2019.105296
[20]  Philippe, G., Michel, D. and Johannes, H. (1975) Contribution à l’étude géologique duvolcan Mikeno, Chaîne des Virunga (République du Zaïre). Compte rendu des séances de la Société de physique et d’histoire naturelle de Genève, 10, 57-66.
[21]  Pitcavage, E. (2020) Geochemical Investigations of Continental Rift Magmatism: A Case Study in East Africa’s Western Rift. Master’s Thesis, The Pennsylvania State University, State College.
[22]  Furman, T. (2003) Geochemical Overview of the East African rift system. AGU Fall Meeting Abstracts, 2003, S52G-03.
[23]  Michon, L., Famin, V. and Quidelleur, X. (2022) Evolution of the East African Rift System from Trap-Scale to Plate-Scale Rifting. Earth-Science Reviews, 231, Article ID: 104089.
https://doi.org/10.1016/j.earscirev.2022.104089
[24]  Unčík, S. and Kmecová, V. (2013) The Effect of Basalt Powder on the Properties of Cement Composites. Procedia Engineering, 65, 51-56.
https://doi.org/10.1016/j.proeng.2013.09.010
[25]  Shen, M., Zhou, L., Chen, Z., Shen, Y., Huang, B. and Lv, J. (2022) Effects of Basalt Powder and Silica Fume on Ultra-High-Strength Cementitious Matrix: A Comparative Study. Case Studies in Construction Materials, 17, e01397.
https://doi.org/10.1016/j.cscm.2022.e01397
[26]  Dobiszewska, M., Pichór, W. and Szołdra, P. (2019) Effect of Basalt Powder Addition on Properties of Mortar. MATEC Web of Conferences, 262, Article No. 06002.
https://doi.org/10.1051/matecconf/201926206002
[27]  Uysal, M. and Yilmaz, K. (2011) Effect of Mineral Admixtures on Properties of Self-Compacting Concrete. Cement and Concrete Composites, 33, 771-776.
https://doi.org/10.1016/j.cemconcomp.2011.04.005
[28]  Abdelaziz, M.A., El-Aleem, S.A. and Menshawy, W.M. (2014) Effect of Fine Materials in Local Quarry Dusts of Limestone and Basalt on the Properties of Portland Cement Pastes and Mortars. International Journal of Engineering Research, 3, 1038-1056.
[29]  Amin, M., Sudibyo, S., Ordiana, A. and Karo, P. (2020) Effect of Basalt Mineral Concentration as PCC Cement Substitution Material on Mortar Products. IOP Conference Series: Earth and Environmental Science, 483, Article ID: 012009.
https://doi.org/10.1088/1755-1315/483/1/012009
[30]  Berodier, E. (2015) Impact of the Supplementary Cementitious Materials on the Kinetics and Microstructural Development of Cement Hydration (No. 6417 THESIS). EPFL, Lausanne.
[31]  Briki, Y. (2020) Maximizing the Use of Supplementary Cementitious Materials (SCMs) in Blended Cements (No. 8140 THESIS). EPFL, Lausanne.
[32]  ASTM International (2023) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
[33]  AFNOR (2018) Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 7: Unconfined Compression Test.
[34]  AFNOR (2003) Mixing Water for Concrete—Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete.
[35]  American Society for Testing and Materials (2006) Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM C1602/C1602M-06.
https://www.astm.org/DATABASE.CART/HISTORICAL/C1602C1602M-06.htm
[36]  AFNOR (2018) Methods of Testing Cement—Part 1: Determination of Strength. NF EN 196-1.
[37]  AFNOR (2017) Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. NF EN 196-3.
[38]  AFNOR (2017) NF EN 196-3.
https://www.boutique.afnor.org/norme/nf-en-196-3/methodes-d-essai-des-ciments-partie-3-determination-du-temps-de-prise-et-de-la-stabilite/article/904098/fa186374
[39]  AFNOR (2010) Testing Fresh Concrete—Part 6: Density. NF EN 192-6. Résistance à la compression uniaxiale—NF EN 1926. Lithoscope.
https://lithoscopectmnc.com/
[40]  AFNOR (2010) Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation. NF EN 1097-2.
[41]  AFNOR (2020) Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation. EN 1097-2, European Committee for Standardization, Brussels.
[42]  Polat, Ö., Polat, A. and Ekici, T. (2021) Automatic Classification of Volcanic Rocks from Thin Section Images Using Transfer Learning Networks. Neural Computing and Applications, 33, 11531-11540.
https://doi.org/10.1007/s00521-021-05849-3
[43]  Hattori, H. (1971) Preparation of Glass Disc Sample of Rock for Light Element Analysis by X-Ray Spectrometry. Bulletin of the Geological Survey of Japan, 22, 103-116.
[44]  Rohiman, A., Prijanto, D., et al. (2019) Geochemical Characteristics of Volcanic Rocks from Mt. Masurai’s Caldera, Jambi, Indonesia. Journal of Physics: Conference Series, 1204, 012070.
https://doi.org/10.1088/1742-6596/1204/1/012070
[45]  Rohiman, A. and Arifin, A.S. (2020) Comparation of Pressed Powder Pellet and Fused Glass Bead Preparation Techniques for Mayor Elements Analysis of Rock Samples Using X-Ray Fluorescence (XRF). Indonesian Journal of Physics, 31, 24-27.
https://doi.org/10.5614/itb.ijp.2020.31.2.4
[46]  Spanu, D., Palestra, A., Prina, V., Monticelli, D., Bonanomi, S., Nanot, S.U., Binda, G., Rampazzi, L., Sessa, G., Callejo Munoz, D., et al. (2023) Tackling the Challenging Determination of Trace Elements in Ultrapure Silicon Carbide by LA-ICP-MS. Molecules, 28, Article 2845.
https://doi.org/10.3390/molecules28062845
[47]  Ryoji, T. and Yuji, O. (1997) XRF Analysis of Major and Trace Elements for Silicate Rocks Using Low Dilution Ratio Fused Glass. HUEPS Technical Report, 2, 1-20.
http://hdl.handle.net/2115/62041
[48]  Nuchdang, S., Channuie, J., Leelanupat, O. and Rattanaphra, D. (2019) Application of Handheld X-Ray Fluorescence Spectrometer for Major Element Analysis and Characterization of Geological Samples in Southern Thailand. IOP Conference Series: Earth and Environmental Science, 398, Article ID: 012005.
https://doi.org/10.1088/1755-1315/398/1/012005
[49]  Willis, J., Feather, C. and Turner, K. (2014) Guidelines for XRF Analysis. James Willis Consultants, Cape Town.
[50]  Chowdhury, A.R., Maheshwari, N., Soni, J., Kapil, M., Mehta, T. and Mukharya, A. (2020) Quantitative X-Ray Fluorescence Analysis: Trace Level Detection of Toxic Elemental Impurities in Drug Product by ED-XRF Spectrometer. Journal of Pharmaceutical and Biomedical Analysis, 189, Article ID: 113292.
https://doi.org/10.1016/j.jpba.2020.113292
[51]  Vangu, S., Phuati, P., Eale, E., Lobota, M. and Ngimbi, M. (2022) Caracterisations Chimique et mineralogique aux Rayons x et Suivi de le Broyabilite des Clinker, Dolerite, Basalte et Metabasalte du Kongo-Central pour une Application Cimentiere. ACASTI and CEDESURK Online JOURNAL, 10, 11-23.
[52]  Taylor, H.F.W. (1997) Cement Chemistry. Thomas Telford, London.
https://doi.org/10.1680/cc.25929
[53]  Dorn, T., Blask, O. and Stephan, D. (2022) Acceleration of Cement Hydration—A Review of the Working Mechanisms, Effects on Setting Time, and Compressive Strength Development of Accelerating Admixtures. Construction and Building Materials, 323, Article ID: 126554.
https://doi.org/10.1016/j.conbuildmat.2022.126554
[54]  Harrisson, A.M. (2019) 4—Constitution and Specification of Portland Cement. In: Hewlett, P.C. and Liska, M., Lea’s Chemistry of Cement and Concrete (Fifth Edition), Butterworth-Heinemann, Oxford, 87-155.
https://doi.org/10.1016/B978-0-08-100773-0.00004-6
[55]  Locher, F.W. (2013) Cement: Bau + Technik GmbH.
https://www.perlego.com/book/1035680/cement-principles-of-production-and-use-pdf
[56]  Sadrmomtazi, A., Tajasosi, S. and Tahmouresi, B. (2018) Effect of Materials Proportion on Rheology and Mechanical Strength and Microstructure of Ultra-High Performance Concrete (UHPC). Construction and Building Materials, 187, 1103-1112.
https://doi.org/10.1016/j.conbuildmat.2018.08.070
[57]  Rikoto, I.I. and Nuhu, S. (2019) Effect of Free Lime and Lime Saturation Factor on Grindability of Cement Clinker. International Journal of Engineering Research and Reviews, 7, 61-66.
[58]  Horckmans, L., Möckel, R., Nielsen, P., Kukurugya, F., Vanhoof, C., Morillon, A. and Algermissen, D. (2019) Multi-Analytical Characterization of Slags to Determine the Chromium Concentration for a Possible Re-Extraction. Minerals, 9, Article 646.
https://doi.org/10.3390/min9100646
[59]  Le, V.S., Louda, P., Tran, H.N., Nguyen, P.D., Bakalova, T., Ewa Buczkowska, K. and Dufkova, I. (2020) Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers, 12, Article 2994.
https://doi.org/10.3390/polym12122994
[60]  Zhao, Y., Zhang, Z., Ji, Y., Song, L. and Ma, M. (2023) Experimental Research on Improving Activity of Calcinated Coal Gangue via Increasing Calcium Content. Materials, 16, Article 2705.
https://doi.org/10.3390/ma16072705
[61]  Baby-Jean Robert Mungyeko, B. and Marias, F. (2019) Modeling of Cement Clinker Chemistry and Engineering of Cement Manufacturing Process: State of the Art. International Journal of Innovation and Applied Studies, 25, 528-551.
[62]  Hewlett, P.C. and Liska, M. (2019) Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, Oxford.
[63]  Bresciani, C. (2008) Simulation numérique de l’hydratation et du développement des propriétés physiques et mécaniques d’une pate de ciment afin de sélectionner de nouveaux ajouts minéraux. Master’s Thesis, école des Mines de Paris—Université PSL, Paris.
[64]  Dolenec, S., Šter, K., Borštnar, M., Nagode, K., Ipavec, A. and Žibret, L. (2020) Effect of the Cooling Regime on the Mineralogy and Reactivity of Belite-Sulfoaluminate Clinkers. Minerals, 10, Article 910.
https://doi.org/10.3390/min10100910
[65]  Shim, S.H., Lee, T.H., Yang, S.J., Noor, N.B.M. and Kim, J.H.J. (2021) Calculation of Cement Composition Using a New Model Compared to the Bogue Model. Materials, 14, Article 4663.
https://doi.org/10.3390/ma14164663
[66]  Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. and IUGS Subcommission on the Systematics of Igneous Rocks (1986) A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27, 745-750.
https://doi.org/10.1093/petrology/27.3.745
[67]  El-Desoky, H., Abd El-Hafez, N., Khalil, A., Arafat, A., Hasan, M.G. and Youssef, T. (2023) The Geology, Petrography, and Geochemistry of Egyptian Dokhan Volcanics: A Potential Source for Construction Aggregate. Minerals, 13, Article 635.
https://doi.org/10.3390/min13050635
[68]  Le Bas, M.J. (2000) IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41, 1467-1470.
https://doi.org/10.1093/petrology/41.10.1467
[69]  Yan, D., Chu, Z., Liu, Z., Wang, W. and Xiong, F. (2023) Petrogenesis of Early Triassic Felsic Volcanic Rocks in the East Kunlun Orogen, Northern Tibet: Implications for the Paleo-Tethyan Tectonic and Crustal Evolution. Minerals, 13, Article 607.
https://doi.org/10.3390/min13050607
[70]  Shi, K., Yang, X., Du, J., Cao, J., Wan, Q. and Cai, Y. (2020) Geochemical Study of Cretaceous Magmatic Rocks and Related Ores of the Hucunnan Cu-Mo Deposit: Implications for Petrogenesis and Poly-Metal Mineralization in the Tongling Ore-Cluster Region. Minerals, 10, Article 107.
https://doi.org/10.3390/min10020107
[71]  Minissale, S., Casalini, M., Cucciniello, C., Balagizi, C., Tedesco, D., Boudoire, G., Morra, V. and Melluso, L. (2022) The Geochemistry of Recent Nyamulagira and Nyiragongo Potassic Lavas, Virunga Volcanic Province, and Implications on the Enrichment Processes in the Mantle Lithosphere of the Tanzania-Congo Craton. Lithos, 420-421, Article ID: 106696.
https://doi.org/10.1016/j.lithos.2022.106696
[72]  Cross, W., Iddings, J.P., Pirsson, L.V. and Washington, H.S. (1902) A Quantitative Chemico-Mineralogical Classification and Nomenclature of Igneous Rocks. The Journal of Geology, 10, 555-690.
https://doi.org/10.1086/621030
[73]  Shi, L., Ju, N., Feng, Y., Zheng, C., Wu, Y. and Liu, X. (2023) Petrogenesis and Tectonic Setting of the Early and Middle Jurassic Granitoids in the Chaihe Area, Central Great Xing’an Range, NE China. Minerals, 13, Article 917.
https://doi.org/10.3390/min13070917
[74]  Chen, X., Zhang, Y., Huo, H. and Wu, Z. (2020) Study of High Tensile Strength of Natural Continuous Basalt Fibers. Journal of Natural Fibers, 17, 214-222.
https://doi.org/10.1080/15440478.2018.1477087
[75]  González-Guzmán, R., Elizondo-Pacheco, L.A., González-Roque, A., et al. (2023) ShinyNORRRM: A Cross-Platform Software to Calculate the CIPW Norm. Mathematical Geosciences, 55, 563-577.
https://doi.org/10.1007/s11004-023-10052-2
[76]  Pouclet, A. and Bram, K. (2021) Nyiragongo and Nyamuragira: A Review of Volcanic Activity in the Kivu Rift, Western Branch of the East African Rift System. Bulletin of Volcanology, 83, Article No. 10.
https://doi.org/10.1007/s00445-021-01435-6
[77]  Zhu, Y., Li, Y., Ding, H., et al. (2022) Vibrational and Structural Insight into Silicate Minerals by Mid-Infrared Absorption and Emission Spectroscopies. Physics and Chemistry of Minerals, 49, Article No. 6.
https://doi.org/10.1007/s00269-022-01180-y
[78]  Sapei, Lanny (2007) Characterisation of Silica in Equisetum hyemale and Its Transformation into Biomorphous Ceramics. Thèse de Doctorat, Universität Potsdam, Potsdam.
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/609
[79]  Seroka, N.S., Taziwa, R. and Khotseng, L. (2022) Green Synthesis of Crystalline Silica from Sugarcane Bagasse Ash: Physico-Chemical Properties. Nanomaterials, 12, Article 2184.
https://doi.org/10.3390/nano12132184
[80]  Xu, J., Wang, C., Wang, T., Wang, Y., Kang, Q., Liu, Y. and Tian, Y. (2018) Mechanisms for Low-Temperature Direct Bonding of Si/Si and Quartz/Quartz via VUV/O3 Activation. RSC Advances, 8, 11528-11536.
https://doi.org/10.1039/C7RA13095C
[81]  Trease, N.M., Clark, T.M., Grandinetti, P.J., Stebbins, J.F. and Sen, S. (2017) Bond Length-Bond Angle Correlation in Densified Silica—Results from 17O NMR Spectroscopy. The Journal of Chemical Physics, 146, Article ID: 184505.
https://doi.org/10.1063/1.4983041
[82]  Stein, M. and Schaller, J. (2022) Comparing Amorphous Silica, Short-Range-Ordered Silicates and Silicic Acid Species by FTIR. Scientific Reports, 12, Article No. 11708.
https://doi.org/10.1038/s41598-022-15882-4
[83]  Jozanikohan, G. and Abarghooei, M.N. (2022) The Fourier Transform Infrared Spectroscopy (FTIR) Analysis for the Clay Mineralogy Studies in a Clastic Reservoir. Journal of Petroleum Exploration and Production Technology, 12, 2093-2106.
https://doi.org/10.1007/s13202-021-01449-y
[84]  Erhard, L.C., Rohrer, J., Albe, K. and Deringer, V.L. (2022) A Machine-Learned Interatomic Potential for Silica and Its Relation to Empirical Models. npj Computational Materials, 8, Article No. 90.
https://doi.org/10.1038/s41524-022-00768-w
[85]  Sherpa, L.S. (2021) Failure Analysis of Injection Moulded Parts.
https://www.theseus.fi/handle/10024/503950
[86]  Adomako, S., Engelsen, C.J., Thorstensen, R.T. and Barbieri, D.M. (2021) Review of the Relationship between Aggregates Geology and Los Angeles and Micro-Deval Tests. Bulletin of Engineering Geology and the Environment, 80, 1963-1980.
https://doi.org/10.1007/s10064-020-02097-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413