全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海水淡化浓海水排海对海洋生态环境影响研究
Study on the Impact of the Brine Discharge from the Desalination Plant on Marine Ecological Environment

DOI: 10.12677/AMS.2023.103022, PP. 205-224

Keywords: 海水淡化,浓海水,海洋生态,环境影响
Seawater Desalination
, Brine, Marine Ecology, Environmental Impact

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解海水淡化工程排放浓海水对海洋生态环境的影响,于2021年对青岛百发海水淡化浓海水排放口邻近海域进行了4个季节的海水水质、浮游植物和浮游动物的海洋生态调查监测,采用改进内梅罗指数和生物多样性指数对海水水质环境和海洋生态环境分别进行了评价。结果表明,除无机氮和无机磷外,其余水质监测指标均符合《海水水质标准》(GB3097-1997)的第四类海水水质标准,部分监测指标达到第一类或第二类海水水质标准,无机氮和磷的污染与浓海水排放无明显关联。改进内梅罗指数评价表明海水淡化浓海水排水海域海水水质处于较清洁状态。全年4个季度调查共鉴定发现浮游植物31属49种,其中硅藻26属44种,甲藻5属5种。全年各站位浮游植物细胞丰度介于0.54~6496.00 × 104 cell/m3之间,平均值为1082.62 × 104 cell/m3,浮游植物细胞丰度最高峰出现在9月份。主要优势种为旋链角毛藻(Chaetoceros)、浮动弯角藻(Eucampia zodiacus)、中肋骨条藻(Skeletonema costatum)、圆筛藻(Coscinodiscus sp.)和菱形藻(Nitzschia spp.)等。全年4个季度调查共鉴定出浮游动物成体20种,其中节肢动物类15种,腔肠动物2种,原生动物、毛颚类、浮游被囊类均只有1种,另发现浮游幼虫10种。全年各站位浮游动物丰度介于5~145 ind./m3之间,平均值为85 ind./m3,生物量介于2.5~610 mg/m3之间,平均值为44 mg/m3。浮游动物群落主要优势种有洪氏纺锤水蚤(Acartia hongi)、捷氏歪水蚤(Tortanus derjugini)、刺尾歪水蚤(Tortanus spinicaudatus)、短角长腹剑水蚤(Oithona brevicornis)、异体住囊虫(Oikopleura dioica)和桡足类六肢幼虫(Nauplii larva)等,海水淡化浓盐水排放海域海洋浮游生物的种类、数量、优势种大多未发生明显变化,生物群落结构较为稳定,在短期内,海水淡化浓海水排放未对周边海域生态环境产生影响。,br> In order to understand the impact of brine discharge from seawater desalination plants on marine ecological environment, the seawater quality, phytoplankton and zooplankton were investigated and monitored in the waters adjacent to Qingdao Baifa seawater desalination plant for four seasons in 2021, and the seawater quality environment and marine ecological environment were evaluated by im-proved Nemerow index and biodiversity index respectively. The results show that, except inorganic nitrogen and inorganic phosphorus, all the other water quality monitoring indicators meet the fourth class seawater quality standard in the Standard for Seawater Quality (GB3097-1997), and some monitoring indicators reach the first class or the second class seawater standard. The pollution of inorganic nitrogen and phosphorus is not obviously related to the discharge of brine discharge. The improved Nemerow index evaluation shows that the seawater in the brine discharge area is in a relatively clean state. A total of 49 species of phytoplankton belonging to 31 genera were identified in four seasons of the year, including 44 species of bacillariophyta belonging to 26 genera and 5 species of pyrrophyta belonging to 5 genera. In the whole year, the phytoplankton cell abundance at each station ranged from 0.54 to 6496.00 × 104 cell/m3, with an average of 1082.62 × 104 cell/m3, and the peak of phytoplankton cell abundance appeared in September. The main dominant species are Chaetoceros, Eucampia zodiacus, Skeletonema costatum,

References

[1]  Eke, J., Yusuf, A., Giwa, A. and Sodiq, A. (2020) The Global Status of Desalination: An Assessment of Current Desal-ination Technologies, Plants and Capacity. Desalination, 495, Article ID: 114633.
https://doi.org/10.1016/j.desal.2020.114633
[2]  郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370.
[3]  自然资源部. 2021年全国海水利用报告[R]. 北京: 自然资源部, 2022.
[4]  Martínez-Alvarez, V., Martin-Gorriz, B. and Soto-Garcíam, M. (2016) Seawater Desalination for Crop Irri-gation: A Review of Current Experiences and Revealed Key Issues. Desalination, 381, 58-70.
https://doi.org/10.1016/j.desal.2015.11.032
[5]  仇汝臣, 岳坤, 王玉爽, 等. 海水淡化技术研究进展及展[J]. 现代化工, 2017, 37(9): 49-53.
[6]  马学虎, 兰忠, 王四芳, 等. 海水淡化浓盐水排放对环境的影响与零排放技术研究进展[J]. 化工进展, 2011, 30(1): 233-242.
[7]  黄逸君, 陈全震, 曾江宁, 等. 海水淡化排放的高盐废水对海洋生态环境的影响[J]. 海洋学研究, 2009, 27(3): 103-110.
[8]  Del Pilar Ruso, Y., De la Ossa Carretero, J.A., Giménez Casalduero, F. and Sánchez Lizaso, J.L. (2007) Spatial and Temporal Changes in Infaunal Communities Inhab-iting Soft-Bottoms Affected by Brine Discharge. Marine Environment Research, 64, 492-503.
https://doi.org/10.1016/j.marenvres.2007.04.003
[9]  Kahn, A.E. and Durako, M.J. (2006) Thalassia testudinum Seedling Responses to Changes in Salinity and Nitrogen Levels. Journal of Experimental Marine Biology and Ecology, 335, 1-12.
https://doi.org/10.1016/j.jembe.2006.02.011
[10]  Lizasoa, J.L.S., Romero, J., Ruiz, J., et al. (2008) Sa-linity Tolerance of the Mediterranean Seagrass Posidonia oceanica: Recommendations to Minimize the Impact of Brine Discharges from Desalination Plants. Desalination, 221, 602-607.
https://doi.org/10.1016/j.desal.2007.01.119
[11]  Alharbi, O.A., Phillips, M.R., Williams, A.T., et al. (2012) Desal-ination Impacts on the Coastal Environment: Ash Shuqayq, Saudi Arabia. Science of the Total Environment, 421, 163-172.
https://doi.org/10.1016/j.scitotenv.2012.01.050
[12]  Sadiq, M. (2002) Metal Contamination in Sediments from a Desalination Plant Effluent Outfall Area. Science of the Total Environment, 287, 37-44.
https://doi.org/10.1016/S0048-9697(01)00994-9
[13]  Belkin, N., Rahav, E., Elifantz, H., Kress, N. and Ber-man-Frank, I. (2017) The Effect of Coagulants and Antiscalants Discharged with Seawater Desalination Brines on Coastal Microbial Communities: A Laboratory and in situ Study from the Southeastern Mediterranean. Water Research, 110, 321-331.
https://doi.org/10.1016/j.watres.2016.12.013
[14]  王晓萌, 梁生康, 石晓勇, 等. 胶州湾海水淡化排海浓盐水对浮游植物生长的影响[J]. 中国海洋大学学报(自然科学版), 2009, 39(S1): 227-233.
[15]  Garrote-Moreno, A., Fernández-Torquemada, Y. and Sánchez-Lizaso, J.L. (2014) Salinity Fluctuation of the Brine Discharge Affects Growth and Survival of the Seagrass Cymodocea nodosa. Marine Pollution Bulletin, 81, 61-68.
https://doi.org/10.1016/j.marpolbul.2014.02.019
[16]  Frank, H., Fussmann, K.E., Rahav, E. and Zeev, E.B. (2019) Chronic Effects of Brine Discharge from Large-Scale Seawater Reverse Osmosis Desalination Facilities on Benthic Bac-teria. Water Research, 151, 478-487.
https://doi.org/10.1016/j.watres.2018.12.046
[17]  Sola, I., Zarzo, D., et al. (2020) Review of the Management of Brine Discharges in Spain. Ocean and Coastal Management, 196, Article ID: 105301.
https://doi.org/10.1016/j.ocecoaman.2020.105301
[18]  国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.1-2007 海洋调查规范第1部分: 总则[S]. 北京: 中国标准出版社, 2008.
[19]  国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 17378.4-2007 海洋监测规范第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008.
[20]  国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 17378.7-2007 海洋监测规范第7部分: 近海污染生态调查和生物监测[S]. 北京: 中国标准出版社, 2008.
[21]  黄丹. 基于改进型内梅罗污染指数法的玛纳斯河流域地表水水质评价[J]. 人民珠江, 2015, 36(3): 103-107.
[22]  国家环境保护局. GB3097-1997 海水水质标准[S]. 北京: 中国环境科学出版社, 1998.
[23]  Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
[24]  Pielou, E.C. (1969) An Intro-duction to Mathematical Ecology. Wiley-Interscience, New York.
[25]  Margalef, R. (1958) Information Theory in Ecol-ogy. General System, 3, 36-7l.
[26]  王妍, 张永, 王玉珏, 等. 胶州湾浮游植物的时空变化特征及其与环境因子的关系[J]. 安全与环境学报, 2013, 13(1): 163-170.
[27]  陈碧鹃, 陈聚法, 袁有宪, 等. 胶州湾北部沿岸浮游植物生态特征的研究[J]. 海洋水产研究, 2000, 21(2): 34-40.
[28]  李艳, 李瑞香, 王宗灵, 等. 胶州湾浮游植物群落结构及其变化的初步研究[J]. 海洋科学进展, 2005, 23(3): 328-334.
[29]  杨世民, 刘任茜, 陈文卿. 2018年胶州湾浮游植物群落结构[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 72-80.
[30]  张亮, 王俊健, 王岚, 等. 青岛近岸海域浮游动物群落结构特征[J]. 海洋科学, 2022, 46(8): 88-100.
[31]  徐东会, 周瑞佳, 杜小媛, 等. 渤海湾秋季浮游动物群落特征及影响因素[J]. 海洋科学, 2022, 46(6): 90-98.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133