Study of the Effect of Operating Temperatures (1320 K, 1420 K and 1520 K) on the Vacant Sites of TiN Alloy in B2 Structure at 45%, 50% and 55% N by MEAM Method
In this work, we have studied the vacancy formation energy of TiN alloy
of structure B2 of size 10×10×10 for nitrogen percentages of 45%, 50% and
55% under the influence of temperature at 1320K, 1420K and
1520K using the Modified Embedded Atom Method MEAMunder the
calculation code LAMMPS version 2020.This
study has enabled us to understand the behavior of the TiN alloy under
different nitrogen percentages in terms of total energy, vacancy formation
energy, crystalline parameter, occupancy rate and order parameter.For
total energy, we have shown that as temperature increases, total energy
decreases, making it easier to obtain TiN at higher temperatures; reaching the
value of -7344.9169 eV for the 55% nitrogen structure for the temperature of 1420
References
[1]
Pierson, H.O. (1996) Handbook of Refractory Carbides and Nitrides. Properties, Characteristics, Processing and Applications. Noyes Publications, Park Ridge.
[2]
Centre Technique des Industries Mécaniques (CETIM) (1987) Manuel des traite- ments de surface à l’usage des bureaux d’étude. CETIM, Paris.
[3]
Bauer, A.D., Herranen, M., Ljungcrantz, H., Carlsson, J.-O. and Sundgren, J.-E. (1997) Corrosion Behaviour of Monocrystalline Titanium Nitride. Surface and Coatings Technology, 91, 208-214.
http://www.sciencedirect.com/science/article/pii/S0257897297000030
[4]
Mantyla, T.A., Helevirta, P.J., Lepisto, T.T. and Siitonen, P.T. (1985) Corrosion Behaviour and Protective Quality of TiN Coatings. Thin Solid Films, 126, 275-281.
https://doi.org/10.1016/0040-6090(85)90321-9
Jehn, H.A. (2000) Improvement of the Corrosion Resistance of PVD Hard Coating-Substrate Systems. Surface and Coatings Technology, 125, 212-217.
https://doi.org/10.1016/S0257-8972(99)00551-4
[7]
Mansfeld, F. (1971) Area Relationships in Galvanic Corrosion. Corrosion, 27, 436- 442. https://doi.org/10.5006/0010-9312-27.10.436
[8]
Carradot, M., Ter-Ovanessian, B. and Normand, B. (2016) Galvanic Coupling Criticality of Passive Stainless Steel Coated by Noble Materials: Role of Porosity Morphology and Distribution.
[9]
Massiani, Y., Medjahed, A., Crousier, J.P., Gravier, P. and Rebatel, I. (1991) Corrosion of Sputtered Titanium Nitride Films Deposited on Iron and Stainless Steel. Surface and Coatings Technology, 45, 115-120.
https://doi.org/10.1016/0257-8972(91)90213-G
[10]
Laugier, M.T. (1986) Adhesion of TiC and TiN Coatings Prepared by Chemical Vapour Deposition on WC-Co-Based Cemented Carbides. Journal of Materials Science, 21, 2269-2272. https://doi.org/10.1007/BF01114266
[11]
Braccini, M. and Dupeux, M. (2013) Mechanics of Solid Interfaces. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118561669
[12]
Toscan, F. (2004) Joint Optimization of Oxide Layer Adhesion and Thermal Oxidation Kinetics on Stainless Steels.
[13]
Paris, A. (2015) Study of Phase Transformations in TiN Base Alloys with Low Silicon Alloying. Universite de Lorraine, Nancy.
[14]
Amelio, S. (2005) Microstructural Evolution of a TiN-Based Alloy: Mechanical Loading by Dynamic Compression and Thermal Stability. Institut National Polytechnique de Lorraine, Nancy.
[15]
Nsongo, T. (2001) Computer Simulation of Order-Disorder Transformation for TiN Binary System. University of Science and Technology Beijing, Beijing.
[16]
Benhamida, M. (2014) Structural, Elastic and Electronic Properties of Transition Metal Nitride Alloys. University of Setif 1, Stif.
[17]
Kim, Y.-M., Lee, B.-J. and Baskes, M.I. (2006) Modified Embedded-Atom Method Interatomic Potentials for Ti and Zr. Physical Review B, 74, Article ID: 014101.
https://doi.org/10.1103/PhysRevB.74.014101
[18]
Kim, Y.-M., and Lee, B.-J. (2008) Modified Embedded-Atom Method Interatomic Potentials for the Ti-C and Ti-N Binary Systems. Acta Materialia, 56, 3481-3489.
https://doi.org/10.1016/j.actamat.2008.03.027
[19]
Yoo, M.H., Daw, M.S. and Baskes, M.I. (1989) Atomistic Simulation of Materials: Beyond Pair Potentials. In Vitek, V., and Srolovitz, D.J., Eds., Plenum, New York, 401. https://doi.org/10.1007/978-1-4684-5703-2_41
[20]
LAMMPS and MEAM Parameters Descriptions.
http://lammps.sandia.gov/doc/pair_meam.html
[21]
Baskes, M.I., Nelson, J.S. and Wright, A.F. (1989) Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium. Physical Review B, 40, 6085-6100.
https://doi.org/10.1103/PhysRevB.40.6085
[22]
Allen, M.P. (2004) Introduction to Molecular Dynamics Simulation. In: Attig, N., Binder, K., Grubmuller, H. and Kremer, K., Eds., Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, Vol. 23, John von Neumann Institute for Computing, Julich, 1-28.
[23]
Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Oxford University Press, Oxford.
[24]
Becquart, C. and Perez, M. (2015) Molecular Dynamics Applied to Materials.
https://www.techniques-ingenieur.fr/
[25]
Qu, M.Y. (2022) Molecular Modeling and Molecular Dynamics Simulation Studies on the Selective Binding Mechanism of MTHFD2 Inhibitors. Computational Molecular Bioscience, 12, 1-11. https://doi.org/10.4236/cmb.2022.121001
[26]
Daw, M.S., Foiles, S.M. and Baskes, M.I. (1993) The Embedded-Atom Method: A Review of Theory and Applications. Materials Science Reports, 9, 251-310.
https://doi.org/10.1016/0920-2307(93)9s0001-U
[27]
Dongare, A.M. and Zhigilei, L.V. (2005) A New Embedded Atom Method Potential for Atomic-Scale Modeling of Metal-Silicon Systems. Proceedings of the International Conference on Computational and Experimental Engineering and Sciences, Chennai, 1-6 December 2005, 2552-2559.