全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Defect Density, Band Gap Discontinuity and Electron Mobility on the Performance of Perovskite Solar Cells

DOI: 10.4236/ampc.2023.138011, PP. 151-160

Keywords: Defect Density, Electron Mobility, Band Gap, Perovskite, SCAPS-1D Software

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 1016 cm-3 all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.

References

[1]  (2020) Datalab-53 (2019) Chiffres clés des énergies renouvelables. Edition 2019.
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2019-05/datalab-53-chiffres-cles-des-energies-renouvelables-edition-2019-mai2019.pdf
[2]  Huang, L., et al. (2016) Electron Transport Layer-Free Planar Perovskite Solar Cells: Further Performance Enhancement Perspective from Device Simulation. Solar Energy Materials and Solar Cells, 157, 1038-1047.
https://doi.org/10.1016/j.solmat.2016.08.025
[3]  Stranks, S.D., et al. (2013) Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342, 341-344.
https://doi.org/10.1126/science.1243982
[4]  Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A. and Snaith, H.J. (2014) Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24, 151-157.
https://doi.org/10.1002/adfm.201302090
[5]  Miyata, A., et al. (2015) Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge carriers in an Organic-Inorganic Tri-Halide Perovskite. Nature Physics, 11, 582-587.
[6]  Liu, M., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509
[7]  Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A. and Snaith, H.J. (2013) Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342, 341-344.
https://doi.org/10.1126/science.1243982
[8]  Ball, J.M., Lee, M.M., Hey, A. and Snaith, H.J. (2013) Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cell. Energy & Environmental Science, 6, 1739-1743.
https://doi.org/10.1039/c3ee40810h
[9]  Snaith, H.J. and Gratzel, M. (2007) Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Advanced Materials, 19, 3643-3647.
https://doi.org/10.1002/adma.200602085
[10]  Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. and Miura, N. (1994) Magnetoabsorption of the Lowest Exciton in Perovskite-Type Compound (CH3NH3) PbI3. Physica B: Condensed Matter, 201, 427-430.
https://doi.org/10.1016/0921-4526(94)91130-4
[11]  Poplavskyy, D. and Nelson, J. (2003) Nondispersive Hole Transport in Amorphous Films of Methoxy-Spirofluorene-Arylamine Organic Compound. Journal of Applied Physics, 93, 341-346.
https://doi.org/10.1063/1.1525866
[12]  Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N. and Seok, S.I. (2013) Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13, 1764-1769.
https://doi.org/10.1021/nl400349b
[13]  Chelvanathan, P., Hossain, M.I. and Amin, N. (2010) Performance Analysis of Copper-Indium-Gallium-Diselenide (CIGS) Solar Cells with Various Buffer Layers by SCAPS. Current Applied Physics, 10, S387-S391.
https://doi.org/10.1016/j.cap.2010.02.018
[14]  Neukom, M. (2019) Comprehensive Characterization and Modelling of Operation Mechanisms in Third Generation Solar Cells.
https://opus.bibliothek.uni_augsburg.de/opus4/files/63805/characterization_and_modelling_diss_neukom.pdf
[15]  Ouédraogo, S., Zougmoré, F. and Ndjaka, J.M.B. (2014) Computational Analysis of the Effect of the Surface Defect Layer (SDL) Properties on Cu (In, Ga) Se2-Based Solar Cell Performances. Journal of Physics and Chemistry of Solids, 75, 688-695.
https://doi.org/10.1016/j.jpcs.2014.01.010
[16]  Minemoto, T., et al. (2001) Theoretical Analysis of the Effect of Conduction BAND Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Solar Energy Materials and Solar Cells, 67, 83-88.
https://doi.org/10.1016/S0927-0248(00)00266-X
[17]  Minemoto, T. and Murata, M. (2015) Theoretical Analysis on Effect of Band Offsets in Perovskite Solar Cells. Solar Energy Materials and Solar Cells, 133, 8-14.
https://doi.org/10.1016/j.solmat.2014.10.036
[18]  Sherkar, T.S., et al. (2017) Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2, 1214- 1222.
https://doi.org/10.1021/acsenergylett.7b00236
[19]  Gloeckler, M. and Sites, J.R. (2005) Band-Gap Grading in Cu (In, Ga) Se2 Solar Cells. Journal of Physics and Chemistry of Solids, 66, 1891-1894.
https://doi.org/10.1016/j.jpcs.2005.09.087

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413