全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Organochlorine Contaminant, Triclosan Leads to Increased Levels of Trihalomethanes in Drinking Water Sources across the United States

DOI: 10.4236/vp.2023.93014, PP. 150-172

Keywords: Organochlorine Contaminants, Triclosan, Trihalomethane, Chloroform, Water Quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

Organochlorine contaminants, such as Triclosan (TCS), are present in drinking water sources across the United States. Since TCS was developed in the late 1960s, antimicrobial compounds have been widely used as multipurpose ingredients in everyday consumer products, can be ingested or absorbed through the skin, and are found in human plasma, breast milk, and urine samples. Monitored by the United States Toxic Substances Control Act, TCS production was limited to 1 million pounds per year, yet by 1998 production of TCS steadily increased from 1 million pounds to 10 million, with an estimated production of approximately 14 million globally by 2011. Studies have shown that the expanded use of antimicrobial agents causes them to be found and remain suspended in the ecosystem, most notably the soil and watersheds. Research has shown emerging concerns related to the overuse of TCS, such as dermal irritations, higher incidence of antibacterial-related allergies, microbial resistance, endocrine system disruptions, altered thyroid hormone activity, metabolism, and tumor metastasis and growth, with overexposure playing a role in inflammatory responsiveness, which could cause adverse outcomes and is associated with numerous pathologies, including cardiovascular disease and several types of cancers. To understand the impact of the overuse of TCS-containing products on water quality before the Food and Drug Administration (FDA) began to require pre-market approval, we have analyzed the data reported between March 2005 and 2015 by Consumer Confidence Report (CCR) on the levels of total trihalomethanes (TTHM), such as chloroform, a product of free chlorine added to TCS in the metropolitan areas primary water sources across the United States, as they correlated to increased production of antibacterial agent, TCS. Our study concluded that increased use of products containing the antimicrobial agent TCS contributes to higher levels of total organochlorine contaminant, trichloromethane, leading to an increase in TTHM levels recorded annually on water quality reports.

References

[1]  Abbott, T., Kor-Bicakci, G., Islam, M. S., & Eskicioglu, C. (2020). A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. International Journal of Molecular Sciences, 21, Article No. 9241.
https://doi.org/10.3390/ijms21239241
https://pubmed.ncbi.nlm.nih.gov/33287448
[2]  Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., & Sturve, J. (2002). Triclosan, a Commonly Used Bactericide Found in Human Milk and in the Aquatic Environment in Sweden. Chemosphere, 46, 1485-1489.
https://pubmed.ncbi.nlm.nih.gov/12002480
https://doi.org/10.1016/S0045-6535(01)00255-7
[3]  Ahn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., Denison, M. S. et al. (2008). In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens. Environmental Health Perspectives, 116, 1203-1210.
https://doi.org/10.1289/ehp.11200
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2535623
[4]  Allmyr, M., Adolfsson-Erici, M., McLachlan, M. S., & Sandborgh-Englund, G. (2006). Triclosan in Plasma and Milk from Swedish Nursing Mothers and Their Exposure via Personal Care Products. Science of the Total Environment, 372, 87-93.
https://doi.org/10.1016/j.scitotenv.2006.08.007
https://pubmed.ncbi.nlm.nih.gov/17007908
[5]  Allmyr, M., Harden, F., Toms, L. M. L., Mueller, J. F., McLachlan, M. S., Adolfsson-Erici, M., & Sandborgh-Englund, G. (2008). The Influence of Age and Gender on Triclosan Concentrations in Australian Human Blood Serum. Science of the Total Environment, 393, 162-167.
https://doi.org/10.1016/j.scitotenv.2007.12.006
https://pubmed.ncbi.nlm.nih.gov/18207219
[6]  Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., & Sultana, F. (2020). Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease and Cancer. SAGE Open Medicine, 8, Article ID: 2050312120965752.
https://doi.org/10.1177/2050312120965752
[7]  Armstrong, D. L., Rice, C. P., Ramirez, M., & Torrents, A. (2017). Influence of Thermal Hydrolysis-Anaerobic Digestion Treatment of Wastewater Solids on Concentrations of Triclosan, Triclocarban, and Their Transformation Products in Biosolids. Chemosphere, 171, 609-616.
https://doi.org/10.1016/j.chemosphere.2016.12.122
https://pubmed.ncbi.nlm.nih.gov/28056447
[8]  Balkwill, F., & Mantovani, A. (2001). Inflammation and Cancer: Back to Virchow? The Lancet, 357, 539-545.
https://doi.org/10.1016/S0140-6736(00)04046-0
[9]  Baum, R., Amjad, U., Luh, J., & Bartram, J. (2015). An Examination of the Potential Added Value of Water Safety Plans to the United States National Drinking Water Legislation. International Journal of Hygiene and Environmental Health, 218, 677-685.
https://doi.org/10.1016/j.ijheh.2014.12.004
[10]  Bedoux, G., Roig, B., Thomas, O., Dupont, V., & Le Bot, B. (2012). Occurrence and Toxicity of Antimicrobial Triclosan and by-Products in the Environment. Environmental Science and Pollution Research, 19, 1044-1065.
https://doi.org/10.1007/s11356-011-0632-z
https://pubmed.ncbi.nlm.nih.gov/22057832
[11]  Beni, R., Guha, S., & Hawrami, S. (2019). Drinking Water Disparities in Tennessee: The Origins and Effects of Toxic Heavy Metals. Journal of Geoscience and Environment Protection, 7, 135-146.
https://doi.org/10.4236/gep.2019.76012
https://www.scirp.org/journal/paperinformation.aspx?paperid=93337
[12]  Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and Endocrine Disrupting Compounds in US Drinking Water. Environmental Science & Technology, 43, 597-603.
https://doi.org/10.1021/es801845a
https://pubmed.ncbi.nlm.nih.gov/19244989
[13]  Bhargava, H. N., & Leonard, P. A. (1996). Triclosan: Applications and Safety. American Journal of Infection Control, 24, 209-218.
https://doi.org/10.1016/S0196-6553(96)90017-6
[14]  Boyce, J. M., & Pittet, D. (2002). Guideline for Hand Hygiene in Health-Care Settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infection Control & Hospital Epidemiology, 23, S3-S40.
https://pubmed.ncbi.nlm.nih.gov/12515399
https://doi.org/10.1086/503164
[15]  Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Urinary Concentrations of Triclosan in the U.S. Population: 2003-2004. Environmental Health Perspectives, 116, 303-307.
https://doi.org/10.1289/ehp.10768
https://pubmed.ncbi.nlm.nih.gov/18335095/
[16]  Canosa, P., Rodriguez, I., Rubi, E., & Cela, R. (2007). Determination of Parabens and Triclosan in Indoor Dust Using Matrix Solid-Phase Dispersion and Gas Chromatography with Tandem Mass Spectrometry. Analytical Chemistry, 79, 1675-1681.
https://pubmed.ncbi.nlm.nih.gov/17297972
https://doi.org/10.1021/ac061896e
[17]  Crofton, K. M., Paul, K. B., DeVito, M. J., & Hedge, J. M. (2007). Short-Term in Vivo Exposure to the Water Contaminant Triclosan: Evidence for Disruption of Thyroxine. Environmental Toxicology and Pharmacology, 24, 194-197.
https://doi.org/10.1016/j.etap.2007.04.008
[18]  Dayan, A. D. (2007). Risk Assessment of Triclosan [Irgasan] in Human Breast Milk. Food and Chemical Toxicology, 45, 125-129.
https://pubmed.ncbi.nlm.nih.gov/17011099
https://doi.org/10.1016/j.fct.2006.08.009
[19]  Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., & Surampalli, R. Y. (2015). Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health, 12, 5657-5684.
https://pubmed.ncbi.nlm.nih.gov/26006133
https://doi.org/10.3390/ijerph120505657
[20]  Dinarello, C. A. (2009). Immunological and Inflammatory Functions of the Interleukin-1 Family. Annual Review of Immunology, 27, 519-550.
https://doi.org/10.1146/annurev.immunol.021908.132612
[21]  EU Cosmetics Directive (2014). List of Preservatives Cosmetic Products May Contain. TCS, Annex VI. Part I, Entry 25. Commission Regulation (EU) European Parliament and of the Council, No 358/2014 & (EC) No 1223/2009.
https://lexparency.org/eu/31976L0768/ANX_VI/
[22]  Fang, J. L., Stingley, R. L., Beland, F. A., Harrouk, W., Lumpkins, D. L., & Howard, P. (2010). Occurrence, Efficacy, Metabolism, and Toxicity of Triclosan. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 28, 147-171.
https://doi.org/10.1080/10590501.2010.504978
[23]  Guha, S., Harlin, P., & Beni, R. (2019). The Effect of Trihalomethanes in Contaminating the Major Watersheds of Middle Tennessee. Natural Science, 11, 233-245.
https://www.scirp.org/journal/paperinformation.aspx?paperid=93724
https://doi.org/10.4236/ns.2019.117023
[24]  Halden, R. U., Lindeman, A. E., Aiello, A. E., Andrews, D., Arnold, W. A., Fair, P. et al. (2017). The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives, 125, Article ID: 064501.
https://doi.org/10.1289/EHP1788
https://ehp.niehs.nih.gov/doi/pdf/10.1289/EHP1788
[25]  Hanioka, N., Jinno, H., Nishimura, T., & Ando, M. (1997). Effect of 2,4,4’-Trichloro-2’-Hydroxydiphenyl Ether on Cytochrome P450 Enzymes in the Rat Liver. Chemosphere, 34, 719-730.
https://doi.org/10.1016/S0045-6535(97)00464-5
[26]  Hermouet, S., Bigot-Corbel, E., & Gardie, B. (2015). Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators of Inflammation, 2015, Article ID: 145293.
https://doi.org/10.1155/2015/145293
[27]  Jacobs, M. N., Nolan, G. T., & Hood, S. R. (2005). Lignans, Bacteriocides and Organochlorine Compounds Activate the Human Pregnane X Receptor (PXR). Toxicology and Applied Pharmacology, 209, 123-133.
https://doi.org/10.1016/j.taap.2005.03.015
[28]  Jones, Y., Wilburn, W., Guha, S., & Beni, R. (2023). Puerto Rico’s Water Supply: An Investigation of the Levels of Trihalomethanes and Other Contaminants. Journal of Geoscience and Environment Protection, 11, 1-21.
https://www.scirp.org/journal/paperinformation.aspx?paperid=126823
https://doi.org/10.4236/gep.2023.118001
[29]  Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S., & Masumoto, J. (2019). The Role of Interleukin-1 in General Pathology. Inflammation and Regeneration, 39, Article No. 12.
https://doi.org/10.1186/s41232-019-0101-5
[30]  Karthikraj, R., & Kannan, K. (2017). Mass Loading and Removal of Benzotriazoles, Benzothiazoles, Benzophenones, and Bisphenols in Indian Sewage Treatment Plants. Chemosphere, 181, 216-223.
https://pubmed.ncbi.nlm.nih.gov/28441612
https://doi.org/10.1016/j.chemosphere.2017.04.075
[31]  Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance. Environmental Science & Technology, 36, 1202-1211.
https://pubmed.ncbi.nlm.nih.gov/11944670
https://doi.org/10.1021/es011055j
[32]  Latch, D. E., Packer, J. L., Stender, B. L., VanOverbeke, J., Arnold, W. A., & McNeill, K. (2005). Aqueous Photochemistry of Triclosan: Formation of 2,4-Dichlorophenol, 2,8-Dichlorodibenzo-P-Dioxin, and Oligomerization Products. Environmental Toxicology and Chemistry, 24, 517-525.
https://doi.org/10.1897/04-243R.1
https://pubmed.ncbi.nlm.nih.gov/15779749
[33]  Levin, R. B., Epstein, P. R., Ford, T. E., Harrington, W., Olson, E., & Reichard, E. G. (2002). U.S. Drinking Water Challenges in the Twenty-First Century. Environmental Health Perspectives, 110, 43-52.
https://doi.org/10.1289/ehp.02110s143
[34]  Lewis, A. M., Varghese, S., Xu, H., & Alexander, H. R. (2006). Interleukin-1 and Cancer Progression: The Emerging Role of Interleukin-1 Receptor Antagonist as a Novel Therapeutic Agent in Cancer Treatment. Journal of Translational Medicine, 4, Article No. 48.
https://doi.org/10.1186/1479-5876-4-48
[35]  Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2002). Occurrence and Environmental Behavior of the Bactericide Triclosan and Its Methyl Derivative in Surface Waters and in Wastewater. Environmental Science & Technology, 36, 2322-2329.
https://pubmed.ncbi.nlm.nih.gov/12075785
https://doi.org/10.1021/es0114254
[36]  Ma, X., Wan, Y., Wu, M., Xu, Y., Xu, Q., He, Z., & Xia, W. (2018). Occurrence of Benzophenones, Parabens and Triclosan in the Yangtze River of China, and the Implications for Human Exposure. Chemosphere, 213, 517-525.
https://doi.org/10.1016/j.chemosphere.2018.09.084
[37]  Moss, T., Howes, D., & Williams, F. M. (2000). Percutaneous Penetration and Dermal Metabolism of Triclosan (2,4,4’-Trichloro-2’-Hydroxydiphenyl Ether). Food and Chemical Toxicology, 38, 361-370.
https://doi.org/10.1016/S0278-6915(99)00164-7
[38]  Perencevich, E. N., Wong, M. T., & Harris, A. D. (2001). National and Regional Assessment of the Antibacterial Soap Market: A Step toward Determining the Impact of Prevalent Antibacterial Soaps. American Journal of Infection Control, 29, 281-283.
https://doi.org/10.1067/mic.2001.115469
[39]  Qualtrics (2023). What Is ANOVA (Analysis of Variance) and What Can I Use It For? ANOVA Test: Definition & Uses (Updated 2023)—Qualtrics.
https://www.qualtrics.com/experience-management/research/anova/
[40]  Robertshaw, H., & Leppard, B. (2007). Contact Dermatitis to Triclosan in Toothpaste. Contact Dermatitis, 57, 383-384.
https://doi.org/10.1111/j.0105-1873.2005.00771.x
[41]  Rover, J. A., & Leu-Wai-See, P. (2014). Role of Colgate Total Toothpaste in Helping Control Plaque and Gingivitis. American Journal of Dentistry, 27, 167-170.
https://pubmed.ncbi.nlm.nih.gov/25208366
[42]  Schuur, A. G., Legger, F. F., van Meeteren, M. E., Moonen, M. J., van Leeuwen-Bol, I., Bergman, A., Visser, T. J., & Brouwer, A. (1998). In Vitro Inhibition of Thyroid Hormone Sulfation by Hydroxylated Metabolites of Halogenated Aromatic Hydrocarbons. Chemical Research in Toxicology, 11, 1075-1081.
https://doi.org/10.1111/j.0105-1873.2005.00771.x
[43]  Schweizer, H. P. (2001). Triclosan: A Widely Used Biocide and Its Link to Antibiotics. FEMS Microbiology Letters, 202, 1-7.
https://doi.org/10.1111/j.1574-6968.2001.tb10772.x
[44]  Shirazi, L. F., Bissett, J., Romeo, F., & Mehta, J. L. (2017). Role of Inflammation in Heart Failure. Current Atherosclerosis Reports, 19, Article No. 27.
https://doi.org/10.1007/s11883-017-0660-3
[45]  Singer, H., Müller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environmental Science & Technology, 36, 4998-5004.
https://doi.org/10.1021/es025750i
[46]  Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., & Pujari, V. B. (2019). Inflammation and Cancer. Annals of African Medicine, 18, 121-126.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704802/
https://doi.org/10.4103/aam.aam_56_18
[47]  Statista (2019). Sales of the Top Toothpaste Brands in the United States in 2016 (Change to Prior Sales Year & in Million U.S. Dollars. Statista.
https://www.statista.com/statistics/323198/sales-of-toothpaste-in-the-us/
[48]  Subedi, B., Lee, S., Moon, H. B., & Kannan, K. (2014). Emission of Artificial Sweeteners, Select Pharmaceuticals, and Personal Care Products through Sewage Sludge from Wastewater Treatment Plants in Korea. Environment International, 68, 33-40.
https://pubmed.ncbi.nlm.nih.gov/24695211
https://doi.org/10.1016/j.envint.2014.03.006
[49]  Thelusmond, J. R., Kawka, E., Strathmann, T. J., & Cupples, A. M. (2018). Diclofenac, Carbamazepine and Triclocarban Biodegradation in Agricultural Soils and the Microorganisms and Metabolic Pathways Affected. Science of the Total Environment, 640-641, 1393-1410.
https://doi.org/10.1016/j.scitotenv.2018.05.403
[50]  Thomaidi, V. S., Matsoukas, C., & Stasinakis, A. S. (2017). Risk Assessment of Triclosan Released from Sewage Treatment Plants in European Rivers Using a Combination of Risk Quotient Methodology and Monte Carlo Simulation. Science of the Total Environment, 603-604, 487-494.
https://doi.org/10.1016/j.scitotenv.2017.06.113
[51]  Thompson, A., Griffin, P., Stuetz, R., & Cartmell, E. (2005). The Fate and Removal of Triclosan during Wastewater Treatment. Water Environment Research, 77, 63-67.
https://doi.org/10.2175/106143005X41636
[52]  United States Census Bureau (2020). U.S. Census Bureau QuickFacts: United States.
https://www.census.gov/quickfacts/fact/table/US/PST045222
[53]  United States Census Bureau (2022). County Population Totals and Components of Change: 2020-2022.
https://www.census.gov/data/datasets/time-series/demo/popest/2020s-counties-total.html
[54]  United States Environmental Protection Agency (2016). PFOA & PFOS Drinking Water Health Advisories (5 p.). EPA.
https://www.epa.gov/sites/production/files/2016-06/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf
[55]  United States Environmental Protection Agency (2022a). Code of Federal Regulations, 2013 Secondary Drinking Water Standards: Guidance.
https://www.epa.gov/sdwa/secondary-drinking-water
[56]  United States Environmental Protection Agency (2022b). Types of Drinking Water Contaminants.
https://www.epa.gov/ccl/types-drinking-water-contaminants
[57]  United States Environmental Protection Agency (2022c). SDWIS/FED Reports Advanced Search: Archives.
https://sdwis.epa.gov/ords/sfdw_pub/r/sfdw/sdwis_fed_reports_public/200
[58]  United States Environmental Protection Agency (2022d). Consumer Confidence Reports (CCR). U.S. Federal Government Agency.
https://ordspub.epa.gov/ords/safewater/f?p=136:102
[59]  United States Food and Drug Administration, HHS (2013). Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Proposed Amendment of the Tentative Final Monograph.
https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAnalyses
[60]  United States Food and Drug Administration, HHS (2016). Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Final Rule. Federal Register, 81, 61106-61130.
https://pubmed.ncbi.nlm.nih.gov/27632802/
[61]  Veldhoen, N., Skirrow, R. C., Osachoff, H., Wigmore, H., Clapson, D. J., Gunderson, M. P., Van Aggelen, G., & Helbing, C. C. (2006). The Bactericidal Agent Triclosan Modulates Thyroid Hormone-Associated Gene Expression and Disrupts Postembryonic Anuran Development. Aquatic Toxicology, 80, 217-227.
https://doi.org/10.1016/j.aquatox.2006.08.010
[62]  Vimalkumar, K., Seethappan, S., & Pugazhendhi, A. (2019). Fate of Triclocarban (TCC) in Aquatic and Terrestrial Systems and Human Exposure. Chemosphere, 230, 201-209.
https://pubmed.ncbi.nlm.nih.gov/31103866
https://doi.org/10.1016/j.chemosphere.2019.04.145
[63]  Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello,, C. A., & Apte, R. N. (2003). IL-1 Is Required for Tumor Invasiveness and Angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2645-2650.
https://doi.org/10.1073/pnas.0437939100
[64]  Wang, C. F., & Tian, Y. (2015). Reproductive Endocrine-Disrupting Effects of Triclosan: Population Exposure, Present Evidence and Potential Mechanisms. Environmental pollution, 206, 195-201.
https://doi.org/10.1016/j.envpol.2015.07.001
[65]  Wang, F., Zheng, F., & Liu, F. (2020). Effects of Triclosan on Antioxidant- and Apoptosis-Related Genes Expression in the Gill and Ovary of Zebrafish. Experimental Animals, 69, 199-206.
https://europepmc.org/article/MED/31839624
https://doi.org/10.1538/expanim.19-0115
[66]  Wang, L. Q., Falany, C. N., & James, M. O. (2004). Triclosan as a Substrate and Inhibitor of 3’-Phosphoadenosine 5’-Phosphosulfate-Sulfotransferase and Udp-Glucuronosyl Transferase in Human Liver Fractions. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 32, 1162-1169.
https://doi.org/10.1124/dmd.104.000273
[67]  Weatherly, L. M., & Gosse, J. A. (2017). Triclosan Exposure, Transformation, and Human Health Effects. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 20, 447-469.
https://doi.org/10.1080/10937404.2017.1399306
[68]  Weinmeyer, R., Norling, A., Kawarski, M., & Higgins, E. (2017). The Safe Drinking Water Act of 1974 and Its Role in Providing Access to Safe Drinking Water in the United States. AMA Journal of Ethics, 19, 1018-1026.
https://pubmed.ncbi.nlm.nih.gov/29028470/
https://doi.org/10.1001/journalofethics.2017.19.10.hlaw1-1710
[69]  Wilburn, W. J., Jamal, S., Ismail, F., Brooks, D., & Whalen, M. (2021). Evaluation of Triclosan Exposures on Secretion of Pro-inflammatory Cytokines from Human Immune Cells. Environmental Toxicology and Pharmacology, 83, Article ID: 103599.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956230/
https://doi.org/10.1016/j.etap.2021.103599
[70]  Witorsch, R. J. (2014). Critical Analysis of Endocrine Disruptive Activity of Triclosan and Its Relevance to Human Exposure through the Use of Personal Care Products. Critical Reviews in Toxicology, 44, 535-555.
https://doi.org/10.3109/10408444.2014.910754
[71]  Wolff, M. S., Teitelbaum, S. L., Windham, G., Pinney, S. M., Britton, J. A., Chelimo, C. et al. (2007). Pilot Study of Urinary Biomarkers of Phytoestrogens, Phthalates, and Phenols in Girls. Environmental Health Perspectives, 115, 116-121.
https://doi.org/10.1289/ehp.9488

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413