全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Total Electron Content during Recurrent and Quiet Geomagnetic Periods at the Koudougou Station in Burkina Faso

DOI: 10.4236/ijaa.2023.133015, PP. 259-280

Keywords: Total Electronic Content, Geomagnetic Activity, Quiet-Day Activity, Recurrent-Day Activity, Solar Flu

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N; - 2°20'E was addressed. This study aims to analyze how geomagnetic variations influence the behavior of TEC in this specific region. The geomagnetic indices Kp and Dst were used to select quiet and recurrent days. Statistical analysis was used to interpret the graphs. The results show that the mean diurnal TEC has a minimum before dawn (around 0500 UT) and reaches a maximum value around 1400 UT, progressively decreasing after sunset. In comparison, the average diurnal TEC on recurrent days is slightly higher than on quiet days, with an average difference of 7 TECU. This difference increases with the level of geomagnetic disturbance, reaching 21 TECU during a moderate storm. The study also reveals significant monthly variations, with March and October showing the highest TEC values for quiet and recurrent days, respectively. Equinox months show the highest mean values, while solstice months show the lowest. Signatures of semi-annual, winter and equatorial ionization anomalies were observed. When analyzing annual variations, it was found that the TEC variation depends significantly on F10.7 solar flux, explaining up to 98% during recurrent geomagnetic activity and 92% during quiet geomagnetic activity.

References

[1]  Rishbeth, H. and Garriott, O.K. (1969) Introduction to Ionospheric Physics. 1st Edition. Academic Press, New York, 234 p.
[2]  Prölss, G.W. (1995) Ionospheric F-Region Storms. In: Volland, H., Ed., Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton.
[3]  Buonsanto, M.J. (1999) Ionospheric Storms—A Review. Space Science Reviews, 88, 563-601.
https://doi.org/10.1023/A:1005107532631
[4]  Mendillo, M. (2006) Storms in the Ionosphere: Patterns and Processes for Total Electron Content. Reviews of Geophysics, 44, Article No. RG4001.
https://doi.org/10.1029/2005RG000193
[5]  Tsurutani, B.T., et al. (2008) Prompt Penetration Electric Fields (PPEFs) and Their Ionospheric Effects during the Great Magnetic Storm of 30-31 October 2003. Journal of Geophysical Research: Space Physics, 113, Article No. A05311.
https://doi.org/10.1029/2007JA012879
[6]  Abdu, M.A. (1997) Major Phenomena of the Equatorial Ionosphere-Thermosphere System under Disturbed Conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1505-1519.
https://doi.org/10.1016/S1364-6826(96)00152-6
[7]  Warnant, R. and Pottiaux, E. (2000) The Increase of the Ionospheric Activity as Measured by GPS. Earth Planets Space, 52, 1055-1060.
https://doi.org/10.1186/BF03352330
[8]  Bagiya, M.S., Joshi, H.P., Iyer, K.N., Aggarwal, M., Ravindran, S. and Pathan, B.M. (2009) TEC Variations during Low Solar Activity Period (2005-2007) Near the Equatorial Ionospheric Anomaly Crest Region in India. Annales Geophysicae, 27, 1047-1057.
https://doi.org/10.5194/angeo-27-1047-2009
[9]  Zoundi, C., Ouattara, F.M., Fleury, R., Amory-Mazaudier, C. and Lassudrie-Duchesne, P. (2012) Seasonal TEC Variability in West Africa Equatorial Anomaly Region. European Journal of Scientific Research, 77, 309-319.
[10]  Venkatesh, K., Fagundes, P. R., Seemala, G. K., de Jesus, R., de Abreu, A. J., and Pillat, V. G. (2014) On the Performance of the IRI-2012 and NeQuick2 Models during the Increasing Phase of the Unusual 24th Solar Cycle in the Brazilian Equatorial and Low-Latitude Sectors. Journal of Geophysical Research: Space Physics, 119, 5087-5105.
https://doi.org/10.1002/2014JA019960
[11]  De Abreu, A.J., et al. (2017) Comparison of GPS-TEC Measurements with IRI2012-TEC Predictions in the Brazilian Sector during the Unusual Solar Minimum 2009. Annals of Geophysics, 60, Article No. A0331.
https://doi.org/10.4401/ag-7300
[12]  Ouattara, F., Zerbo, J.-L. and Fleury, R. (2017) Investigation on Equinoctial Asymmetry Observed in Niamey Station Center for Orbit Determination in Europe Total Electron Content (CODG TEC) Variation during ~ Solar Cycle 23. International Journal of Physical Sciences, 12, 308-321.
https://doi.org/10.5897/IJPS2017.4684
[13]  Singh, A.K., Das, R.M. and Saini, S. (2019) Variations of Total Electron Content over High Latitude Region during the Ascending Phase of 24th Solar Cycle. Advances in Space Research, 63, 3558-3567.
https://doi.org/10.1016/j.asr.2019.02.017
[14]  Christian, Z., Nongobsom, B., M’Bi, K. and Frédéric, O. (2021) Total Electron Content (TEC) Seasonal Variability under Fluctuating Activity, from 2000 to 2002, at Niamey Station. International Journal of Physical Sciences, 16, 138-145.
https://doi.org/10.5897/IJPS2021.4960
[15]  Appleton, E.V. (1946) Two Anomalies in the Ionosphere. Nature, 157, 691.
https://doi.org/10.1038/157691a0
[16]  Duncan, R.A. (1960) The Equatorial F-region of the Ionosphere. Journal of Atmospheric and Terrestrial Physics, 18, 89-100.
https://doi.org/10.1016/0021-9169(60)90081-7
[17]  Liu, G., Huang, W., Shen, H. and Gong, J. (2012) Vertical TEC Variations and Model during Low Solar Activity at a Low Latitude Station, Xiamen. Advances in Space Research, 49, 530-538.
https://doi.org/10.1016/j.asr.2011.10.024
[18]  Chauhan, V., Singh, O.P. and Singh, B. (2011) Diurnal and Seasonal Variation of GPS-TEC during a Low Solar Activity Period as Observed at a Low Latitude Station Agra. Indian Journal of Radio and Space Physics, 40, 26-36.
[19]  De Siqueira, P.M., De Paula, E.R., Muella, M., Rezende, L.F.C., Abdu, M.A. and Gonzalez, W.D. (2011) Storm-Time Total Electron Content and Its Response to Penetration Electric Fields over South America. Annales Geophysicae, 29, 1765-1778.
https://doi.org/10.5194/angeo-29-1765-2011
[20]  Ghimire, B.D., Chapagain, N.P., Basnet, V., Bhatta, K. and Khadka, B. (2020) Variation of GPS-TEC Measurements of the Year 2014: A Comparative Study with IRI-2016 Model. Journal of Nepal Physical Society, 6, 90-96.
https://doi.org/10.3126/jnphyssoc.v6i1.30555
[21]  Ghimire, B.D., Chapagain, N.P., Basnet, V., Bhatta, K. and Khadka, B. (2020) Variation of Total Electron Content (TEC) in the Quite and Disturbed Days and Their Correlation with Geomagnetic Parameters of Lamjung Station in the Year of 2015. Bibechana, 17, 123-132.
https://doi.org/10.3126/bibechana.v17i0.26249
[22]  Akala, A.O., Rabiu, A.B., Somoye, E.O., Oyeyemi, E.O. and Adeloye, A.B. (2013) The Response of African Equatorial GPS-TEC to Intense Geomagnetic Storms during the Ascending Phase of Solar Cycle 24. Journal of Atmospheric and Solar-Terrestrial Physics, 98, 50-62.
https://doi.org/10.1016/j.jastp.2013.02.006
[23]  Fagundes, P.R., Cardoso, F.A., Fejer, B.G., Venkatesh, K., Ribeiro, B.A.G. and Pillat, V.G. (2016) Positive and Negative GPS-TEC Ionospheric Storm Effects during the Extreme Space Weather Event of March 2015 over the Brazilian Sector. Journal of Geophysical Research: Space Physics, 121, 5613-5625.
https://doi.org/10.1002/2015JA022214
[24]  Migoya-Orué, Y.O., Radicella, S. M. and Coïsson, P. (2009) Low Latitude Ionospheric Effects of Major Geomagnetic Storms Observed Using TOPEX TEC Data. Annales Geophysicae, 27, 3133-3139.
https://doi.org/10.5194/angeo-27-3133-2009
[25]  Blagoveshchensky, D.V., Sergeeva, M.A. and Shmelev, Y.A. (2019) TEC Dynamics during the Intense Magnetic Storm. 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, 24-28 June 2019, 64-67.
https://doi.org/10.1109/RSEMW.2019.8792746
[26]  Lissa, D., Srinivasu, V.K.D., Prasad, D. and Niranjan, K. (2020) Ionospheric Response to the 26 August 2018 Geomagnetic Storm Using GPS-TEC Observations Along 80° E and 120° E Longitudes in the Asian Sector. Advances in Space Research, 66, 1427-1440.
https://doi.org/10.1016/j.asr.2020.05.025
[27]  Pahima, T., Gnabahou, D.A., Sandwidi, S.A. and Ouattara, F. (2022) TEC Variability during Fluctuating Events at Koudougou Station during Solar Cycle 24. International Journal of Geosciences, 13, 936-950.
https://doi.org/10.4236/ijg.2022.1310047
[28]  Sawadogo, S., Gnabahou, D.A., Sandwidi, S.A. and Ouattara, F. (2023) Koudougou (Burkina Faso, Africa), GPS-TEC Response to Recurrent Geomagnetic Storms during Solar Cycle 24 Declining Phase. International Journal of Geophysics, 2023, Article ID: 4181389.
https://doi.org/10.1155/2023/4181389
[29]  Bolaji, O.S., Adeniyi, J.O., Radicella, S.M. and Doherty, P.H. (2012) Variability of Total Electron Content over an Equatorial West African Station during Low Solar Activity. Radio Science, 47, Article No. RS1001.
https://doi.org/10.1029/2011RS004812
[30]  Christian, Z., Stéphane, D., Drabo, K.N. and Frédéric, O. (2021) Total Electron Content Response to Two Moderate Geomagnetic Storms in July 2003 at Niamey Station in Niger. Scientific Research and Essays, 16, 51-57.
https://doi.org/10.5897/SRE2021.6730
[31]  Legrand, J. and Simon, P. (1989) Solar Cycle and Geomagnetic Activity: A Review for Geophysicists. Part I. The Contributions to Geomagnetic Activity. Annales Geophysicae, 7, 565-578.
[32]  Zerbo, J.L., Amory Mazaudier, C., Ouattara, F. and Richardson, J.D. (2012) Solar Wind and Geomagnetism: Toward a Standard Classification of Geomagnetic Activity from 1868 to 2009. Annales Geophysicae, 30, 421-426.
https://doi.org/10.5194/angeo-30-421-2012
[33]  Ouattara, F., Zoundi, C., Mazaudier, C.A., Fleury, R. and Duchesne, P.L. (2011) Détermination du contenu électronique total à partir des pseudo distances (Pd) ou pseudo range (Pr) a la station de Koudougou au Burkina Faso. Journal des Sciences, 11, 12-19.
[34]  Patel, K., Singh, A., Singh, S.B. and Singh, A. (2019) Causes Responsible for Intense and Severe Storms during the Declining Phase of Solar Cycle 24. Journal of Astrophysics and Astronomy, 40, Article No. 4.
https://doi.org/10.1007/s12036-018-9569-7
[35]  Perira, F. (2004) Analyse spatio-temporelle du champ géomagnétique et des processus d’accélération solaires observés en émission radio. Université d’Orléans, Orléans.
[36]  Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O. and Morschhauser, A. (2021) The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather, 19, e2020SW002641.
https://doi.org/10.1029/2020SW002641
[37]  Sckopke, N. (1966) A General Relation between the Energy of Trapped Particles and the Disturbance Field Near the Earth. Journal of Geophysical Research, 71, 3125-3130.
https://doi.org/10.1029/JZ071i013p03125
[38]  Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K. and Okada, M. (1995) Interplanetary Origin of Geomagnetic Activity in the Declining Phase of the Solar Cycle. Journal of Geophysical Research: Space Physics, 100, 21717-21733.
https://doi.org/10.1029/95JA01476
[39]  Gonzalez, W., et al. (1994) What Is a Geomagnetic Storm? Journal of Geophysical Research: Space Physics, 99, 5771-5792.
https://doi.org/10.1029/93JA02867
[40]  Ouattara, F. and Amory-Mazaudier, C. (2009) Solar-Geomagnetic Activity and Aa Indices toward a Standard Classification. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1736-1748.
https://doi.org/10.1016/j.jastp.2008.05.001
[41]  Tsurutani, B.T., et al. (2006) Corotating Solar Wind Streams and Recurrent Geomagnetic Activity: A Review. Journal of Geophysical Research: Space Physics, 111, Article No. A07S01.
[42]  Lissa, D., Venkatesh, K., Prasad, D., Niranjan, K. and Seemala, G.K. (2021) GPS TEC Variations under Quiet and Disturbed Geomagnetic Conditions during the Descending Phase of 24th Solar Cycle over the Indian Equatorial and Low Latitude Regions. Advances in Space Research, 68, 1836-1849.
https://doi.org/10.1016/j.asr.2021.04.021
[43]  Prasad, S., Rao, P.R., Prasad, D., Venkatesh, K. and Niranjan, K. (2012) On the Variabilities of the Total Electron Content (TEC) over the Indian Low Latitude Sector. Advances in Space Research, 49, 898-913.
https://doi.org/10.1016/j.asr.2011.12.020
[44]  Oluwadare, T.S., Thai, C.N., Akala, A.O.-O., Heise, S., Alizadeh, M. and Schuh, H. (2019) Characterization of GPS-TEC over African Equatorial Ionization Anomaly (EIA) Region during 2009-2016. Advances in Space Research, 63, 282-301.
https://doi.org/10.1016/j.asr.2018.08.044
[45]  Liu, L., Zou, S., Yao, Y. and Wang, Z. (2020) Forecasting Global Ionospheric TEC Using Deep Learning Approach. Space Weather, 18, e2020SW002501.
https://doi.org/10.1029/2020SW002501
[46]  Feng, J., Zhang, T., Han, B. and Zhao, Z. (2021) Analysis of Spatiotemporal Characteristics of Internal Coincidence Accuracy in Global TEC Grid Data. Advances in Space Research, 68, 3365-3380.
https://doi.org/10.1016/j.asr.2021.06.002
[47]  Gonzalez, W.D., Tsurutani, B.T. and Clúa de Gonzalez, A.L. (1999) Interplanetary Origin of Geomagnetic Storms. Space Science Reviews, 88, 529-562.
https://doi.org/10.1023/A:1005160129098
[48]  Ghimire, B.D., Chapagain, N.P., Basnet, V. and Khadka, B. (2021) Analysis of TEC Variations over Nepal Obtained from GPS Data on Geo-Magnetically Quiet and Disturbed Days of the Year 2015. Journal of Nepal Physical Society, 7, 102-109.
https://doi.org/10.3126/jnphyssoc.v7i2.38630
[49]  Gupta, J.K. and Singh, L. (2000) Long Term Ionospheric Electron Content Variations over Delhi. Annales Geophysicae, 18, 1635-1644.
https://doi.org/10.1007/s00585-001-1635-8
[50]  Ouattara, F. (2009) Relationship between Geomagnetic Classes’ Activity Phases and Their Occurrence during the Sunspot Cycle. Annals of Geophysics, 52, 107-116.
https://doi.org/10.4401/ag-4634
[51]  Sawadogo, W.E., Ouattara, F. and Ali, M.N. (2019) The Effects of the Recurrent Storms on Fof2 at Ouagadougou Station during Solar Cycles 21-22. International Journal of Geosciences, 10, 80-90.
https://doi.org/10.4236/ijg.2019.101006
[52]  Sandwidi, S.A. and Ouattara, F. (2022) Recurrent Events’ Impacts on foF2 Diurnal Variations at Dakar Station during Solar Cycles 21-22. International Journal of Geophysics, 2022, Article ID: 4883155.
https://doi.org/10.1155/2022/4883155
[53]  Sur, D., Firdaus, J., Dutta, R. and Chakraborty, A. (2020) Correlation of Disturbed Dynamo Electric Field and Thermospheric Plasma Transport with Latitudinally Diverse Total Electron Content during Recovery Phase of a Geomagnetic Storm. Proceedings of Industry Interactive Innovations in Science, Engineering & Technology (I3SET2K19), Kalyani, 13-14 December 2019.
https://doi.org/10.2139/ssrn.3517228
[54]  Zhang, K., Wang, H., Yamazaki, Y. and Xiong, C. (2021) Effects of Subauroral Polarization Streams on the Equatorial Electrojet during the Geomagnetic Storm on June 1, 2013. Journal of Geophysical Research: Space Physics, 126, e2021JA029681.
https://doi.org/10.1029/2021JA029681
[55]  Feynman, J. and Gu, X.Y. (1986) Prediction of Geomagnetic Activity on Time Scales of One to Ten Years. Reviews of Geophysics, 24, 650-666.
https://doi.org/10.1029/RG024i003p00650
[56]  Turner, N.E., Mitchell, E.J., Knipp, D.J. and Emery, B.A. (2006) Energetics of Magnetic Storms Driven by Corotating Interaction Regions: A Study of Geoeffectiveness. In: Tsurutani, B., McPherron, R., Lu, G., Sobral, J.H.A. and Gopalswamy, N., Eds., Recurrent Magnetic Storms: Corotating Solar Wind Streams, Vol. 167, Wiley, Hoboken.
https://doi.org/10.1029/167GM11
[57]  Crooker, N. and Cliver, E. (1994) Postmodern View of M-Regions. Journal of Geophysical Research: Space Physics, 99, 23383-23390.
https://doi.org/10.1029/94JA02093
[58]  Alves, M.V., Echer, E. and Gonzalez, W.D. (2006) Geoeffectiveness of Corotating Interaction Regions as Measured by Dst Index. Journal of Geophysical Research: Space Physics, 111, Article No. A07S05.
https://doi.org/10.1029/2005JA011379
[59]  Jonah, O.F., et al. (2015) TEC Variation during High and Low Solar Activities over South American Sector. Journal of Atmospheric and Solar-Terrestrial Physics, 135, 22-35.
https://doi.org/10.1016/j.jastp.2015.10.005
[60]  Fejer, B.G. (1981) The Equatorial Ionospheric Electric Fields. A Review. Journal of Atmospheric and Terrestrial Physics, 43, 377-386.
https://doi.org/10.1016/0021-9169(81)90101-X
[61]  Olwendo, O.J., Baki, P., Cilliers, P.J., Mito, C. and Doherty, P. (2013) Comparison of GPS TEC Variations with IRI-2007 Tec Prediction at Equatorial Latitudes during a Low Solar Activity (2009-2011) Phase over the Kenyan Region. Advances in Space Research, 52, 1770-1779.
https://doi.org/10.1016/j.asr.2012.08.001
[62]  Grison, B. (2006) Les cornets polaires: étude d’une région clef de l’interface vent solaire-magnétosphère à l’aide des données Cluster. Université Pierre et Marie Curie-Paris VI, Paris.
[63]  Russell, C.T. and McPherron, R.L. (1973) Semiannual Variation of Geomagnetic Activity. Journal of Geophysical Research, 78, 92-108.
https://doi.org/10.1029/JA078i001p00092
[64]  Pahima, T., Gnabahou, D.A., Sandwidi, S.A. and Ouattara, F. (2023) Koudougou Station TEC’s Variability Seasonal Anomalies Analysis during Fluctuating Events over Solar Cycle 24. Applied Physics Research, 15, 50-64.
https://doi.org/10.5539/apr.v15n1p50

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413