全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热流边界下无限大平板的瞬态热传导分析
Analysis of Transient Heat Conduction of Infinite Flat Plate Subjected to Heat Flow Boundary

DOI: 10.12677/IJM.2023.123011, PP. 109-117

Keywords: 热流边界,瞬态传热,分离变量法
Heat Flow Boundary
, Heat Conduction Problem, Method of Separation of Variables

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时了解和掌握飞行器周围的温度状况,对飞行器的安全运行至关重要。本文将受热流作用的飞行器视为一个受随时间变化热流边界条件的一维无限大平板,利用分离变量法对该问题进行了解析求解。由于该问题为求解边界条件为非齐次的定解问题,我们通过引入辅助函数将问题描述为齐次问题,并给出了具体的求解模式。最后,将理论分析结果与有限元模拟结果进行了比较,结果表明两种方法获得的计算结果基本一致。
Understanding and grasping the temperature condition around aircraft in real time is critical for its safe operation. In this paper, the problem of an aircraft subjected to heat flow is regarded as a one-dimensional infinite plate with a time-varying heat flow boundary condition, and is solved analytically by the method of separation of variables. Since this is an inhomogeneous boundary-value problem, we describe the problem as homogeneous by introducing auxiliary functions, and give a specific solving method. Finally, the theoretical analysis results are compared with the finite element simulation results, and the results show that the calculation results obtained by the two methods are basically consistent.

References

[1]  王庆洋, 丛堃林, 刘丽丽, 陆宏志, 徐胜金. 临近空间高超声速飞行器气动力及气动热研究现状[J]. 气体物理, 2017, 2(4): 46-55.
[2]  彭治雨, 石义雷, 龚红明, 李中华, 罗义成. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345.
[3]  孟松鹤, 丁小恒, 易法军, 朱燕伟, 解维华. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775.
[4]  Zhang, Z.K., Xu, W.W., Ye, W., et al. (2022) Heated Wind-Tunnel Experiments and Numerical Investigations Onhypersonic Blunt Cone Aerodynamic Heating. Acta Astronautica, 197, 154-168.
https://doi.org/10.1016/j.actaastro.2022.05.021
[5]  张超, 刘洪泉, 赵泽华, 等. 高超声速钝锥体热环境仿真计算[J]. 弹箭与制导学报, 2018, 38(6): 43-46. http://doi.org/10.15892/j.cnki.djzdxb.2018.06.010
[6]  Huo, L. and Yang, T. (2015) The Rapid Engineering Aero-Heating Calculation Method for Hypersonic Vehicles. Applied Mechanics and Materials, 775, 59-67.
https://doi.org/10.4028/www.scientific.net/AMM.775.59
[7]  He, Z., Ni, F., Wang, W., et al. (2021) A Phys-ics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials. Materials Today Communications, 28, Article 102719.
https://doi.org/10.1016/j.mtcomm.2021.102719
[8]  Beck, J.V., Blackwell, B. and Clair, C.R.S. (1985) Inverse Heat Conduction: III-Posed Problems. Wiley-Interscience, Hoboken.
[9]  Seddiq, M. and Maerefat, M. (2020) Analyti-cal Solution for Heat Transfer Problem in a Cross-Flow Plate Heat Exchanger. International Journal of Heat and Mass Transfer, 163, Article 120410.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120410
[10]  Zhang, B., Mei, J., Cui, M., et al. (2019) A General Approach for Solving Three-Dimensional Transient Nonlinear Inverse Heat Conduction Problems in Irregular Complex Structures. International Journal of Heat and Mass Transfer, 140, 909-917.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.049
[11]  王明新. 数学物理方程[M]. 北京: 清华大学出版社有限公司, 2005.
[12]  姚端正. 一种实现边界条件与方程均齐次化的方法[J]. 大学物理, 2013, 32(3): 53-58.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133