全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tectonic Related Lithium Deposits Another Major Region Found North East Tanzania—A New Area with Close Association to the Dominant Areas: The Fourth of Four

DOI: 10.4236/nr.2023.149012, PP. 161-191

Keywords: Lithium Triangle of South America Southwest United States Tibetan Plateau of China East Africa Rift System Tectonic Continental, Oceanic Plate Subduction Tertiary (Miocene - Holocene) Volcanics Continental Rifting

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current “mega” interest in Lithium resources was spurred by the development of Lithium-Ion batteries to aid in restructuring the world’s reliance on carbon spewing power petroleum reserves. Current resources of lithium recovery have fallen into two main categoriesPegmatite, found worldwide associated with felsic intrusions and Brine Related, and now with development in the Southwest United States of America (SWUS), a third category Tertiary Volcanic clays, are specifically associated with Tertiary volcanics and major Tectonic Plate interactions. “Active” Plate tectonics is important as both the SWUS, the Lithium Triangle of South America (LTSA) and the Tibetan Plateau of China (TPC) producing tertiary (Miocene) volcanism that is important to the development of Lithium resources. The Tanzanian part of the East Africa Rift System (EARS) has features of both the SWUS, tertiary volcanic related “playas” and Continental rifting, the LTSA, tertiary volcanic related “Brines” and a major Tectonic plate event (subduction of an Oceanic Plate beneath the Continental South American Plate) and the TPC, tertiary volcanics (?) and major tectonic plate event (subduction of the Indian Continental Plate under the Eurasian Continental Plate). As well as the association of peralkaline and metaluminous felsic volcanics with Lithium playas of the SWUS and the EARS (Tanzania) “playas”. These similarities led to an analysis of a volcanic rock in Northeast Tanzania. When it returned 1.76% Lithium, a one-kilometer spaced soil sampling program returned, in consecutive samples over 0.20% Lithium (several samples over 1.0% lithium

References

[1]  Li, Y.-L., Miao, W.-L., He, M.-Y., Li, C.-Z., Gu, H.-E. and Zhang, X.-Y. (2023) Origin of Lithium-Rich Salt Lakes on the Western Kunlun Mountains of the Tibetan Plateau: Evidence from Hydro Geochemistry and Lithium Isotopes. Ore Geology Reviews, 155, Article ID: 105356.
https://doi.org/10.1016/j.oregeorev.2023.105356
[2]  Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P., Timothy, J. and Wallington, T.J. (2012) Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits: Ore Geology Reviews, 48, 55-69.
https://doi.org/10.1016/j.oregeorev.2012.05.006
[3]  (January 2023) U.S. Geological Survey, Mineral Commodity Summaries.
[4]  Bhutada, G. (2023) This Chart Shows Which Countries Produce the Most Lithium. World Economic Forum.
https://www.weforum.org/agenda/2023/01/chart-countries-produce-lithium-world/
[5]  Halama, R., McDonough, W.F., Rudnick, R.L., Keller, J. and Klaudius, J. (2007) The Li Isotopic Composition of Oldoinyo Lengai: Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis. Earth and Planetary Science Letters, 254, 77-89.
https://doi.org/10.1016/j.epsl.2006.11.022
[6]  Sadiman Volcano. Wikipedia.
https://en.wikipedia.org/wiki/Sadiman_volcano
[7]  Scoon, R.N. (2020) Geotourism, Iconic Landforms and Island-Style Speciation Patterns in National Parks of East Africa. Geoheritage, 12, Article No. 66.
https://doi.org/10.1007/s12371-020-00486-z
[8]  Mana, S., Furman, T., Turrin, B.D., Feigenson, M.D. and Swisher, C.C. (2015) Magmatic Activity across the East African North Tanzanian Divergence Zone. Journal of the Geological Society, 172, 368-389.
https://doi.org/10.1144/jgs2014-072
[9]  Feneyrol, J., Ohnenstetter, D., Giuliani, G., Fallick, A.E., Rollion-Bard, C., Robert, J.L. and Malisa, E.P. (2012) Evidence of Evaporites in the Genesis of the Vanadian Grossular “Tsavorite” Deposit in Namalulu, Tanzania. The Canadian Mineralogist, 50, 745-769.
https://doi.org/10.3749/canmin.50.3.745
[10]  Paslick, C., Dawson, J., Lange, R., Halliday, A. and James, D. (1996) Indirect Crustal Contamination: Evidence from Isotopic and Chemical Disequilibria in Minerals from Alkali Basalts and Nephelinites from Northern Tanzania. Contributions to Mineralogy and Petrology, 125, 277-292.
https://doi.org/10.1007/s004100050222
[11]  Encyclopædia Britannica, Inc. (2023) Major Mountain Belts of the World (The North American Cordillera).
[12]  US Department of the Interior (2020) National Park Services: Divergent Plate Boundary—Continental Rift.
[13]  Zoback, M.L. and Thompson, G.A. (1978) Basin and Range Rifting in Northern Nevada; Clues from a Mid-Miocene Rift and Its Subsequent Offsets. Geology, 6, 111-116.
https://doi.org/10.1130/0091-7613(1978)6<111:BARRIN>2.0.CO;2
[14]  Stewart, J.H. (1978) Rift Systems in the Western United States; Conference Paper Part of the NATO Advanced Study Institutes Series Book Series (ASIC, Volume 37).
[15]  Zoback, M.L., McKee, E.H., Blakely, R.J. and Thompson, G.A. (1994) The Northern Nevada Rift: Regional Tectono-Magmatic Relations and Middle Miocene Stress Direction. Geological Society of America Bulletin, 106, 371-382.
https://doi.org/10.1130/0016-7606(1994)106<0371:TNNRRT>2.3.CO;2
[16]  Rytuba, J.J. (1976) Geology and Ore Deposits of the McDermitt Caldera, Nevada-Oregon. Open-File Report 76-535 US Geological Survey.
https://doi.org/10.3133/ofr76535
[17]  Roth, D., Mutler, W., Tahija, L., Bahe, K., Iasillo, E., Kaplan, P., Martina, K., Cluff, T., Chow, B. and Shannon, B. (2022) Lithium Americas Corp. Feasibility Study, National Instrument 43-101 Technical Report for the Thacker Pass Project, Humboldt County, Nevada, USA; Effective Date: November 2.
[18]  Henry, C.D., et al. (2017) Geology and Evolution of the McDermitt Caldera, Northern Nevada and Southeastern Oregon, Western USA. Geosphere, 13, 1066-1112.
https://doi.org/10.1130/GES01454.1
[19]  Macdonald, R. and Scaillet, B. (2006) The Central Kenya Peralkaline Province: Insights into the Evolution of Peralkaline Salic Magmas. Lithos, 91, 59-73.
https://doi.org/10.1016/j.lithos.2006.03.009
[20]  Robinson, P.T., McKee, E.H. and Moiola, R.J. (1968) Cenozoic Volcanism and Sedimentation, Silver Peak Region, Western Nevada and Adjacent California. GSA Bulletin, 116, 577-612.
https://doi.org/10.1130/MEM116-p577
[21]  Davis, J.R. (1981) late Cenozoic Geology of Clayton Valley, Nevada and the Genesis of a Lithium-Enriched Brine. The University of Texas, Austin.
[22]  Diamond, D.S. and Ingersoll, R.V. (2002) Structural and Sedimentologic Evolution of a Miocene Supradetachment Basin, Silver Peak Range and Adjacent Areas, West-Central Nevada. International Geology Review, 44, 588-623.
https://doi.org/10.2747/0020-6814.44.7.588
[23]  Keith, W.J., Turner, R.L., Blakely, R., Ehmann, J. and Close T.J. (1988) Mineral Resources of the Silver Peak Range Wilderness Study Area, Esmeralda County, Nevada. U.S. Geological Survey Bulletin 1731, Dept. of the Interior USA.
[24]  Hulen, J.B. (2008) Geology and Conceptual Modeling of the Silver Peak Geothermal Prospect, Esmeralda County. Nevada Report, Sierra Geothermal Power Corporation, Vancouver.
[25]  Stevens, C.H., Stone, P. and Blakely, R.J. (2013) Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity), California: A Geologic and Geophysical Synthesis. Geosciences, 3, 176-215.
https://doi.org/10.3390/geosciences3020176
[26]  Sheridan, M.F. (year) Owens Valley—A Major Rift between the Sierra Nevada Batholith and Basin and Range Province, U.S.A.; Conference Paper Part of the NATO Advanced Study Institutes Series Book Series (ASIC, Volume 37).
[27]  Price, J.G. and Lechler, P.J. (2000) Possible Volcanic Source of Lithium in Brines in Clayton Valley, Nevada. Geological Society of Nevada, Reno.
[28]  Cheng, F., Jolivet, M., Guo, Z., Wang, L., Zhang, C. and Li, X. (2021) Cenozoic Evolution of the Qaidam Basin and Implications for the Growth of the Northern Tibetan Plateau: A Review. Earth-Science Reviews, 220, Article ID: 103730.
https://doi.org/10.1016/j.earscirev.2021.103730
[29]  Ding, L., Kapp, P., Zhong, D. and Deng, W. (2003) Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44, 1833-1865.
https://doi.org/10.1093/petrology/egg061
[30]  Li, L., Garzione, C.N., Pullen, A., et al. (2018) Late Cretaceous Cenozoic Basin Evolution and Topographic Growth of the Hoh Xil Basin, Central Tibetan Plateau. GSA Bulletin, 130, 499-521.
https://doi.org/10.1130/B31769.1
[31]  Wang, Q., McDermott, F., et al. (2005) Cenozoic K-Rich Adakitic Volcanic Rocks in the Hoh Xil Area, Northern Tibet: Lower Crustal Melting in an Intracontinental Setting. Geology, 33, 465-468.
https://doi.org/10.1130/G21522.1
[32]  Xia, L., Li, X., Ma, Z., Xu, X. and Xia, Z. (2011) Cenozoic Volcanism and Tectonic Evolution of the Tibetan Plateau. Gondwana Research, 19, 850-866.
https://doi.org/10.1016/j.gr.2010.09.005
[33]  Yin, A., Dang, Y.-Q., Zhang, M., Chen, X.-H. and McRivette, M.W. (2008) Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions (Part 3): Structural Geology, Sedimentation, and Regional Tectonic Reconstruction. Research Article GSA Bulletin, 120, 847-876.
https://doi.org/10.1130/B26232.1
[34]  Zhang, X., et al. (2019) The Source, Distribution, and Sedimentary Pattern of K-Rich Brines in the Qaidam Basin, Western China. Minerals, 9, Article No. 655.
[35]  Zhang, Y., Fan, Z., Li, L., et al. (2019) The Source, Distribution, and Sedimentary Pattern of k-Rich Brines in the Qaidam Basin, Western China. Minerals, 9, Article No. 655.
https://doi.org/10.3390/min9110655
[36]  South America Geology Andes.png. Wikipedia.
https://commons.wikimedia.org/wiki/File:South_america_geology_andes.png
[37]  Goudarzi, G.H. (1977) Geologic Map of South America. Miscellaneous Field Studies. Map MF-868 A, USGS Dept. of the Interior, Washington DC.
[38]  Encyclopædia Britannica, Inc. (2023) South America Geologic History.
[39]  Currie, C.A., Ducea, M.N., DeCelles, P.G. and Beaumont, C. (2015) Geodynamic Models of Cordilleran Orogens: Gravitational Instability of Magmatic Arc Roots. In: DeCelles, P.G., Ducea, M.N., Carrapa, B. and Kapp, P.A., Eds., Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile, The Geological Society of America, Ithaca, Memoir 212.
https://doi.org/10.1130/2015.1212(01)
[40]  By the Editor: Altiplano-Puna Volcanic Complex (South America); Posted in: Plate Tectonics/Volcanism Sat, 06/18/2022; Latin America & Caribbean Geographic.
[41]  Kay, S.M. and Coira, B.L. (2009) Shallowing and Steepening Subduction Zones, Continental Lithospheric Loss, Magmatism, and Crustal Flow under the Central Andean Altiplano-Puna Plateau. In: Kay, S.M., Ramos, V.A. and Dickinson, W.R., Eds., Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Geological Society of America, Ithaca, 229-260.
https://doi.org/10.1130/2009.1204(11)
[42]  Catherine Hyland (2018) Lithium Mining, Atacama Desert.
https://www.catherinehyland.co.uk/work/lithium-mining
[43]  Berg, R.C. and Sady-Kennedy, T.A. (2021) Commentary South America’s Lithium Triangle: Opportunities for the Biden Administration. Center for Strategic and International Studies, Washington DC.
[44]  Toczeck, A., da Silva Schmitt, R., da Silva Braga, M.A. and de Miranda, F.P. (2019) Tectonic Evolution of the Paleozoic Alto Tapajós Intracratonic Basin—A Case Study of a Fossil Rift in the Amazon Craton. Journal of South American Earth Sciences, 94, Article ID: 102225.
https://doi.org/10.1016/j.jsames.2019.102225
[45]  Salar de Atacama. Wikipedia.
https://en.wikipedia.org/wiki/Salar_de_Atacama
[46]  Zapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A. and Castañeda, J.P. (2019) Cretaceous Extensional and Compressional Tectonics in the Northwestern Andes, Prior to the Collision with the Caribbean Oceanic Plateau. Gondwana Research, 66, 207-226.
https://doi.org/10.1016/j.gr.2018.10.008
[47]  University of Arizona (2004) Geological Demolition Derby: New View on Tibetan Plateau’s Rift Valleys.
[48]  Wei, H.-H., Wu, G.-L., Ding, L., Fan, L.-G., Li, L. and Meng, Q.-R. (2023) Revisiting the Mechanisms of Mid-Tertiary Uplift of the Ne Tibetan Plateau. National Science Review, 10, nwad008.
https://doi.org/10.1093/nsr/nwad008
[49]  Su, Z., Mo, X., Dong, G., Zhao, Z., Qiu, R., Guo, T. and Wang, L. (2004) 40Ar-39Ar Geochronology of Cenozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet, China, and Their Geological Implications. Chinese Science Bulletin, 49, 1970-1979.
https://doi.org/10.1007/BF03184291
[50]  Staisch, L.M., Niemi, N.A., Clark, M.K. and Chang, H. (2016) Eocene to Late Oligocene History of Crustal Shortening within the Hoh Xil Basin and Implications for the Uplift History of the Northern Tibetan Plateau. Tectonics, 35, 862-895.
https://doi.org/10.1002/2015TC003972
[51]  Dong, G.C. (2002) Linzizong Volcanic Rocks in Linzhou Volcanic Basin, Tibet: Implications for India—Eurasia Collision Process. Ph.D. Dissertation, China University of Geosciences, Wuhan. (In Chinese)
[52]  Miao, Y., Wu, F., Chang, H., Fang, X., Deng, T., Sun, J. and Jin, C. (2016) Simplified Geological Map of the Hoh Xil Basin Region 1:250,000-Scale Regional Geological Map.
[53]  Northern Arizona University: Geology of the Tibetan Plateau.
https://Oak.ucc.nau.edu
[54]  
https://ars.els-cdn.com/content/image/1-s2.0-S1342937X10001772-fx1.jpg.
[55]  Jeffery, A.J. and Gertisser, R. (2018) Peralkaline Felsic Magmatism of the Atlantic Islands. Frontiers in Earth Science, 6, Article No. 145.
https://doi.org/10.3389/feart.2018.00145
[56]  Hastie, A.R. (2021) Adakites. In: Alderton, D. and Elias, S.A., Eds., Encyclopedia of Geology, 2nd Edition, Elsevier, Amsterdam, 209-214.
https://doi.org/10.1016/B978-0-12-409548-9.12496-0
[57]  Karsli, O., Dokuz, A., Kandemir, R., Aydin, F., Schmitt, A.K., Ersoy, E.Y. and Alyildiz, C. (2019) Adakite-Like Parental Melt Generation by Partial Fusion of Juvenile Lower Crust, Sakarya Zone, Ne Turkey: A Far-Field Response to Break-Off of the Southern Neotethyan Oceanic Lithosphere. Lithos, 338-339, 58-72.
https://doi.org/10.1016/j.lithos.2019.03.029
[58]  Qaidam Basin. Wikipedia.
https://en.wikipedia.org/wiki/Qaidam_Basin
[59]  Blogger China (Data about 2016 Ish).
https://www.blogchina.com/
[60]  Shihua, T. (2022) China’s Qinghai Salt Lake Jumps as New Lithium Carbonate Factory Comes Online. Yicai.
[61]  Lithium Batteries in China. Wikipedia.
https://en.wikipedia.org/wiki/Lithium_batteries_in_China
[62]  SMM Home Metal News Precious Metals (Nov 30, 2018) Decryption of China’s Four Major Salt Lakes, Five Major Refining Technical Routes! Everything about Lithium Extraction from the Salt Lake Is Here!
[63]  SMM Home Metal News Precious Metals (Aug 17, 2021) The Largest Lithium Extraction Project from Brine in China Officially Produces 20,000 Tons of Battery-Grade Lithium Carbonate per Year.
[64]  Wu, L., Xiao, A., Yang, S., Wang, L., Mao, L., Wang, L., Dong, Y. and Xu, B. (2012) Two-Stage Evolution of the Altyn Tagh Fault during the Cenozoic: New Insight from Provenance Analysis of a Geological Section in NW Qaidam Basin, NW China. Terra Nova, 24, 387-395.
https://doi.org/10.1111/j.1365-3121.2012.01077.x
[65]  Woodruff, W.H., Horton, B.K., Kapp, P. and Stockli, D.F. (2013) Late Cenozoic Evolution of the Lunggar Extensional Basin, Tibet: Implications for Basin Growth and Exhumation in Hinterland Plateaus. GSA Bulletin, 125, 343-358.
https://doi.org/10.1130/B30664.1
[66]  Styron, R.H., Taylor, M.H., Sundell, K.E., Stockli, D.F., Oalmann, J.A.G., Möller, A., McCallister, A.T., Liu, D. and Ding, L. (2013) Miocene Initiation and Acceleration of Extension in the South Lunggar Rift, Western Tibet: Evolution of an Active Detachment System from Structural Mapping and (U-Th)/He Thermochronology. Tectonics, 32, 880-907.
https://doi.org/10.1002/tect.20053
[67]  (August 3, 2021) Jadar Lithium-Borates Project, Serbia. Mining Technology.
https://www.mining-technology.com/projects/jadar-lithium-borates-project-serbia
[68]  Geology of Serbia. Wikipedia.
https://en.wikipedia.org/wiki/Geology_of_Serbia

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133